29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Altered Theca and Cumulus Oocyte Complex Gene Expression, Follicular Arrest and Reduced Fertility in Cows with Dominant Follicle Follicular Fluid Androgen Excess

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aspiration of bovine follicles 12–36 hours after induced corpus luteum lysis serendipitously identified two populations of cows, one with High androstenedione (A4; >40 ng/ml; mean = 102) and another with Low A4 (<20 ng/ml; mean = 9) in follicular fluid. We hypothesized that the steroid excess in follicular fluid of dominant follicles in High A4 cows would result in reduced fertility through altered follicle development and oocyte maternal RNA abundance. To test this hypothesis, estrous cycles of cows were synchronized and ovariectomy was performed 36 hours later. HPLC MS/MS analysis of follicular fluid showed increased dehydroepiandrosterone (6-fold), A4 (158-fold) and testosterone (31-fold) in the dominant follicle of High A4 cows. However, estrone (3-fold) and estradiol (2-fold) concentrations were only slightly elevated, suggesting a possible inefficiency in androgen to estrogen conversion in High A4 cows. Theca cell mRNA expression of LHCGR, GATA6, CYP11A1, and CYP17A1 was greater in High A4 cows. Furthermore, abundance of ZAR1 was decreased 10-fold in cumulus oocyte complexes from High A4 cows, whereas NLRP5 abundance tended to be 19.8-fold greater ( P = 0.07). There was a tendency for reduction in stage 4 follicles in ovarian cortex samples from High A4 cows suggesting that progression to antral stages were impaired. High A4 cows tended (P<0.07) to have a 17% reduction in calving rate compared with Low A4 cows suggesting reduced fertility in the High A4 population. These data suggest that the dominant follicle environment of High A4 cows including reduced estrogen conversion and androgen excess contributes to infertility in part through altered follicular and oocyte development.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells.

          It has been a controversial issue as to how many DNA cytosine methyltransferase mammalian cells have and whether de novo methylation and maintenance methylation activities are encoded by a single gene or two different genes. To address these questions, we have generated a null mutation of the only known mammalian DNA methyltransferase gene through homologous recombination in mouse embryonic stem cells and found that the development of the homozygous embryos is arrested prior to the 8-somite stage. Surprisingly, the null mutant embryonic stem cells are viable and contain low but stable levels of methyl cytosine and methyltransferase activity, suggesting the existence of a second DNA methyltransferase in mammalian cells. Further studies indicate that de novo methylation activity is not impaired by the mutation as integrated provirus DNA in MoMuLV-infected homozygous embryonic stem cells become methylated at a similar rate as in wild-type cells. Differentiation of mutant cells results in further reduction of methyl cytosine levels, consistent with the de novo methylation activity being down regulated in differentiated cells. These results provide the first evidence that an independently encoded DNA methyltransferase is present in mammalian cells which is capable of de novo methylating cellular and viral DNA in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition.

            The female gamete (the oocyte) serves the distinct purpose of transmitting the maternal genome and other maternal factors that are critical for post-ovulation events. Through the identification and characterization of oocyte-specific factors, we are beginning to appreciate the diverse functions of oocytes in ovarian folliculogenesis, fertilization and embryogenesis. To understand these processes further, we identified genes called zygote arrest 1 (Zar1 and ZAR1 in mouse and human, respectively) as novel oocyte-specific genes. These encode proteins of 361 amino acids and 424 amino acids, respectively, which share 59% amino-acid identity and an atypical plant homeo-domain (PHD) motif. Although Zar1-null (Zar1(-/-)) mice are viable and grossly normal, Zar1(-/-) females are infertile. Ovarian development and oogenesis through the early stages of fertilization are evidently unimpaired, but most embryos from Zar1(-/-) females arrest at the one-cell stage. Distinct pronuclei form and DNA replication initiates, but the maternal and paternal genomes remain separate in arrested zygotes. Fewer than 20% of the embryos derived from Zar1(-/-) females progress to the two-cell stage and show marked reduction in the synthesis of the transcription-requiring complex, and no embryos develop to the four-cell stage. Thus, Zar1 is the first identified oocyte-specific maternal-effect gene that functions at the oocyte-to-embryo transition and, as such, offers new insights into the initiation of embryonic development and fertility control in mammals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries.

              To test the hypothesis that the hyperandrogenemia associated with polycystic ovary syndrome (PCOS) results from an intrinsic abnormality in ovarian theca cell steroidogenesis, we examined steroid hormone production, steroidogenic enzyme activity, and mRNA expression in normal and PCOS theca cells propagated in long-term culture. Progesterone (P4), 17alpha-hydroxyprogesterone (17OHP4), and testosterone (T) production per cell were markedly increased in PCOS theca cell cultures. Moreover, basal and forskolin-stimulated pregnenolone, P4, and dehydroepiandrosterone metabolism were increased dramatically in PCOS theca cells. PCOS theca cells were capable of substantial metabolism of precursors into T, reflecting expression of an androgenic 17beta-hydroxysteroid dehydrogenase. Forskolin-stimulated cholesterol side chain cleavage enzyme (CYP11A) and 17alpha-hydroxylase/17,20-desmolase (CYP17) expression were augmented in PCOS theca cells compared with normal cells, whereas no differences were found in steroidogenic acute regulatory protein mRNA expression. Collectively, these observations establish that increased CYP11A and CYP17 mRNA expression, as well as increased CYP17, 3beta-hydroxysteroid dehydrogenase, and 17beta-hydroxysteroid dehydrogenase enzyme activity per theca cell, and consequently increased production of P4, 17OHP4, and T, are stable properties of PCOS theca cells. These findings are consistent with the notion that there is an intrinsic alteration in the steroidogenic activity of PCOS thecal cells that encompasses multiple steps in the biosynthetic pathway.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                16 October 2014
                : 9
                : 10
                : e110683
                Affiliations
                [1 ]Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
                [2 ]USDA-ARS Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska, United States of America
                USA, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AFS RAC ASC JRW. Performed the experiments: AFS WEP KMS BDC RJV SGK RMM RAC ASC JRW. Analyzed the data: AFS WEP RAC ASC JRW. Contributed reagents/materials/analysis tools: RAC ASC JRW. Contributed to the writing of the manuscript: AFS RAC ASC JRW.

                Article
                PONE-D-14-16776
                10.1371/journal.pone.0110683
                4199720
                25330369
                4cb7e1ca-1bc4-459d-82c0-1635770936da
                Copyright @ 2014

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 14 April 2014
                : 19 September 2014
                Page count
                Pages: 13
                Funding
                This project was supported by Agriculture and Food Research Initiative Competitive Grant no. 2013-67015-20965 from the USDA National Institute of Food and Agriculture. The project was also supported in part by USDA State of Nebraska Hatch Grants (NEB 13-154, NEB-ANHL 26-85, NEB-26-198) Nebraska Experiment Station Multi-State Research Funds (NEB 26-202, NEB 26-206) and the Undergraduate Creative Activities and Research Experiences (UCARE) Funding from University of Nebraska Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Agriculture
                Livestock
                Cattle
                Agricultural Production
                Biochemistry
                Hormones
                Androgens
                Estrogens
                Sex Hormones
                Steroid Hormones
                Physiology
                Endocrine Physiology
                Hormone Synthesis
                Reproductive Endocrinology
                Reproductive Physiology
                Research and Analysis Methods
                Model Organisms
                Animal Models
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article