33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics

      , , ,
      Journal of Applied Microbiology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Beyond the Venn diagram: the hunt for a core microbiome.

          Discovering a core microbiome is important for understanding the stable, consistent components across complex microbial assemblages. A core is typically defined as the suite of members shared among microbial consortia from similar habitats, and is represented by the overlapping areas of circles in Venn diagrams, in which each circle contains the membership of the sample or habitats being compared. Ecological insight into core microbiomes can be enriched by 'omics approaches that assess gene expression, thereby extending the concept of the core beyond taxonomically defined membership to community function and behaviour. Parameters defined by traditional ecology theory, such as composition, phylogeny, persistence and connectivity, will also create a more complex portrait of the core microbiome and advance understanding of the role of key microorganisms and functions within and across ecosystems. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for a core gut microbiota in the zebrafish.

            Experimental analysis of gut microbial communities and their interactions with vertebrate hosts is conducted predominantly in domesticated animals that have been maintained in laboratory facilities for many generations. These animal models are useful for studying coevolved relationships between host and microbiota only if the microbial communities that occur in animals in lab facilities are representative of those that occur in nature. We performed 16S rRNA gene sequence-based comparisons of gut bacterial communities in zebrafish collected recently from their natural habitat and those reared for generations in lab facilities in different geographic locations. Patterns of gut microbiota structure in domesticated zebrafish varied across different lab facilities in correlation with historical connections between those facilities. However, gut microbiota membership in domesticated and recently caught zebrafish was strikingly similar, with a shared core gut microbiota. The zebrafish intestinal habitat therefore selects for specific bacterial taxa despite radical differences in host provenance and domestication status.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The core gut microbiome, energy balance and obesity.

              Metagenomics is an emerging field focused on characterizing the structures, functions and dynamic operations of microbial communities sampled in their native habitats without the need for culture. Here, we present findings from a 16S rRNA gene sequence- and whole community DNA shotgun sequencing-based analysis of the adult human gut microbiomes of lean and obese mono- and dizygotic twins. Our findings indicate that a core microbiome can be found at the gene level, despite large variation in community membership, and that variations from the core are associated with obesity. These findings have implications for ongoing Human Microbiome Project(s), and highlight important challenges to the field of metagenomics.
                Bookmark

                Author and article information

                Journal
                Journal of Applied Microbiology
                J Appl Microbiol
                Wiley-Blackwell
                13645072
                July 2017
                July 2017
                : 123
                : 1
                : 2-17
                Article
                10.1111/jam.13415
                28176435
                4d10f664-e652-4d9f-b166-2e497f6029d1
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article