2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coastal Vulnerability: A Brief Review on Integrated Assessment in Southeast Asia

      ,
      Journal of Marine Science and Engineering
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coastal zones are an essential part of maintaining sustainability in the world. Coastal regions have gained importance due to various factors, including high ecological production, dense population, industry compatibility, waste disposal, leisure, transportation, and development of military strategies. Coasts are often on the move and must adapt while nature constantly works to maintain balance. Southeast Asia has gained prominence due to its rich ecosystem, high productivity, and densely populated coastal region. In light of this, the coastlines of Southeast Asia are threatened by various factors, including global climate change and human activities. These factors exacerbate the shoreline erosion, frequent catastrophic events, rising sea levels, and saltwater intrusion. Coastal management has become one of the most important challenges of the past decade. The coastal vulnerability index (CVI) was developed to identify and manage vulnerable locations along the coast. Thus, this review attempts to summarize coastal vulnerability in Southeast Asian based on journals and reports. Topics covered include: (1) introduction to coastal vulnerability, (2) methods for determining coastal vulnerability, (3) factors influencing coastal vulnerability (4) associated coastal vulnerability, (5) assessment gaps, and (6) further courses of action. Consequently, assessment of coastal vulnerability will support Southeast Asian coastal communities in guiding mitigation strategies to manage coastal threats in future climate change and urban development.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Resilience and Stability of Ecological Systems

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The complexity and stability of ecosystems

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extreme weather and climate events with ecological relevance: a review.

              Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Marine Science and Engineering
                JMSE
                MDPI AG
                2077-1312
                May 2022
                April 28 2022
                : 10
                : 5
                : 595
                Article
                10.3390/jmse10050595
                4d2c3d39-e1ae-4baf-b73d-28aa5c3768ab
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article