32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Browning of Boreal Freshwaters Coupled to Carbon-Iron Interactions along the Aquatic Continuum

      research-article
      1 , * , 2 , 1
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The color of freshwaters, often measured as absorbance, influences a number of ecosystem services including biodiversity, fish production, and drinking water quality. Many countries have recently reported on increasing trends of water color in freshwaters, for which drivers are still not fully understood. We show here with more than 58000 water samples from the boreal and hemiboreal region of Sweden and Canada that absorbance of filtered water (a 420) co-varied with dissolved organic carbon (DOC) concentrations ( R 2  = 0.85, P<0.0001), but that a 420 relative to DOC is increased by the presence of iron (Fe). We found that concentrations of Fe significantly declined with increasing water retention in the landscape, resulting in significantly lower Fe concentrations in lakes compared to running waters. The Fe loss along the aquatic continuum corresponded to a proportional loss in a 420, suggesting a tight biogeochemical coupling between colored dissolved organic matter and Fe. Since water is being flushed at increasing rates due to enhanced runoff in the studied regions, diminished loss of Fe along the aquatic continuum may be one reason for observed trends in a 420, and in particular in a 420/DOC increases. If trends of increased Fe concentrations in freshwaters continue, water color will further increase with various effects on ecosystem services and biogeochemical cycles.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Light limitation of nutrient-poor lake ecosystems.

          Productivity denotes the rate of biomass synthesis in ecosystems and is a fundamental characteristic that frames ecosystem function and management. Limitation of productivity by nutrient availability is an established paradigm for lake ecosystems. Here, we assess the relevance of this paradigm for a majority of the world's small, nutrient-poor lakes, with different concentrations of coloured organic matter. By comparing small unproductive lakes along a water colour gradient, we show that coloured terrestrial organic matter controls the key process for new biomass synthesis (the benthic primary production) through its effects on light attenuation. We also show that this translates into effects on production and biomass of higher trophic levels (benthic invertebrates and fish). These results are inconsistent with the idea that nutrient supply primarily controls lake productivity, and we propose that a large share of the world's unproductive lakes, within natural variations of organic carbon and nutrient input, are limited by light and not by nutrients. We anticipate that our result will have implications for understanding lake ecosystem function and responses to environmental change. Catchment export of coloured organic matter is sensitive to short-term natural variability and long-term, large-scale changes, driven by climate and different anthropogenic influences. Consequently, changes in terrestrial carbon cycling will have pronounced effects on most lake ecosystems by mediating changes in light climate and productivity of lakes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Environmental chemistry: browning the waters.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Variation in dissolved organic matter controls bacterial production and community composition.

              An ongoing debate in ecology revolves around how species composition and ecosystem function are related. To address the mechanistic controls of this relationship, we manipulated the composition of dissolved organic matter (DOM) fed to aquatic bacteria to determine effects on both bacterial activity and community composition. Sites along terrestrial to aquatic flow paths were chosen to simulate movement of DOM through catchments, and DOM was fed to downslope and control bacterial communities. Bacterial production was measured, and DOM chemistry and bacterial community composition (using denaturing gradient gel electrophoresis of 16S rRNA genes) were characterized following incubations. Bacterial production, dissolved organic carbon (DOC)-specific bacterial production, and DOC consumption were greatest in mesocosms fed soil water DOM; soil water DOM enhanced lake and stream bacterial production by 320-670% relative to lake and stream controls. Stream DOM added to lake bacteria depressed bacterial production relative to lake controls in the early season (-78%) but not the mid-season experiment. Addition of upslope DOM to stream and lake bacterial communities resulted in significant changes in bacterial community composition relative to controls. In four of five DOM treatments, the bacterial community composition converged to the DOM source community regardless of the initial inoculum. These results demonstrate that shifts in the supply of natural DOM were followed by changes in both bacterial production and community composition, suggesting that changes in function are likely predicated on at least an initial change in the community composition. The results indicate that variation in DOM composition of soil and surface waters influences bacterial community dynamics and controls rates of carbon processing in set patterns across the landscape.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                5 February 2014
                : 9
                : 2
                : e88104
                Affiliations
                [1 ]Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
                [2 ]Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec, Canada
                University of Yamanashi, Japan
                Author notes

                Competing Interests: The authors declare that we no competing interests exist.

                Conceived and designed the experiments: GW. Performed the experiments: GW. Analyzed the data: GW YP LT. Contributed reagents/materials/analysis tools: GW YP LT. Wrote the paper: GW YP LT.

                Article
                PONE-D-13-44220
                10.1371/journal.pone.0088104
                3914935
                24505396
                4d37b60c-4525-4553-bd33-643f2c73db35
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 October 2013
                : 8 January 2014
                Page count
                Pages: 7
                Funding
                Financial support was received from the Swedish Research Council (VR) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas). This work is part of and profited from the networks financed by Nordforsk (CRAICC and DomAQUA) and the Norwegian Research Council (Norklima ECCO). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Ecology
                Ecological Environments
                Marine Environments
                Biogeochemistry
                Ecosystems
                Global Change Ecology
                Marine Ecology
                Marine Biology
                Marine Monitoring
                Chemistry
                Environmental Chemistry
                Marine Chemistry
                Metallurgy
                Metal Alloys
                Iron Alloys
                Earth Sciences
                Environmental Sciences
                Environmental Geography
                Geochemistry
                Limnology
                Marine and Aquatic Sciences
                Marine Monitoring
                Materials Science
                Metallurgy
                Metal Alloys
                Iron Alloys

                Uncategorized
                Uncategorized

                Comments

                Comment on this article