13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Ferroic Domain Walls for Nanoelectronics

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A prominent challenge towards novel nanoelectronic technologies is to understand and control materials functionalities down to the smallest scale. Topological defects in ordered solid-state (multi-)ferroic materials, e.g., domain walls, are a promising gateway towards alternative sustainable technologies. In this article, we review advances in the field of domain walls in ferroic materials with a focus on ferroelectric and multiferroic systems and recent developments in prototype nanoelectronic devices.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          Magnetic domain-wall racetrack memory.

          Recent developments in the controlled movement of domain walls in magnetic nanowires by short pulses of spin-polarized current give promise of a nonvolatile memory device with the high performance and reliability of conventional solid-state memory but at the low cost of conventional magnetic disk drive storage. The racetrack memory described in this review comprises an array of magnetic nanowires arranged horizontally or vertically on a silicon chip. Individual spintronic reading and writing nanodevices are used to modify or read a train of approximately 10 to 100 domain walls, which store a series of data bits in each nanowire. This racetrack memory is an example of the move toward innately three-dimensional microelectronic devices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epitaxial BiFeO3 multiferroic thin film heterostructures.

            Enhancement of polarization and related properties in heteroepitaxially constrained thin films of the ferroelectromagnet, BiFeO3, is reported. Structure analysis indicates that the crystal structure of film is monoclinic in contrast to bulk, which is rhombohedral. The films display a room-temperature spontaneous polarization (50 to 60 microcoulombs per square centimeter) almost an order of magnitude higher than that of the bulk (6.1 microcoulombs per square centimeter). The observed enhancement is corroborated by first-principles calculations and found to originate from a high sensitivity of the polarization to small changes in lattice parameters. The films also exhibit enhanced thickness-dependent magnetism compared with the bulk. These enhanced and combined functional responses in thin film form present an opportunity to create and implement thin film devices that actively couple the magnetic and ferroelectric order parameters.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiferroics: a magnetic twist for ferroelectricity.

              Magnetism and ferroelectricity are essential to many forms of current technology, and the quest for multiferroic materials, where these two phenomena are intimately coupled, is of great technological and fundamental importance. Ferroelectricity and magnetism tend to be mutually exclusive and interact weakly with each other when they coexist. The exciting new development is the discovery that even a weak magnetoelectric interaction can lead to spectacular cross-coupling effects when it induces electric polarization in a magnetically ordered state. Such magnetic ferroelectricity, showing an unprecedented sensitivity to ap plied magnetic fields, occurs in 'frustrated magnets' with competing interactions between spins and complex magnetic orders. We summarize key experimental findings and the current theoretical understanding of these phenomena, which have great potential for tuneable multifunctional devices.
                Bookmark

                Author and article information

                Journal
                Materials (Basel)
                Materials (Basel)
                materials
                Materials
                MDPI
                1996-1944
                10 September 2019
                September 2019
                : 12
                : 18
                : 2927
                Affiliations
                [1 ]School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
                [2 ]ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney, Sydney, NSW 2052, Australia
                Author notes
                Author information
                https://orcid.org/0000-0002-8108-9339
                https://orcid.org/0000-0002-8879-4567
                Article
                materials-12-02927
                10.3390/ma12182927
                6766344
                31510049
                4d65998c-629e-43d4-b98b-2a48c0d8cf22
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 August 2019
                : 06 September 2019
                Categories
                Review

                ferroelectrics,multiferroics,domain walls,topological defects,nanoelectronics

                Comments

                Comment on this article