1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lysozyme Protects Against Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Inflammation in Human Corneal Epithelial Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The purpose of this study was to investigate the effects of lysozyme, an antimicrobial enzyme found in tears that protects the eye against pathogens, on pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through corneal epithelial cells.

          Methods

          The expression of the angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease (TMPRSS2) in human corneal epithelial cells (HCECs) was measured by RT-PCR and Western blotting. The altered expression of the pro-inflammatory molecules induced by spike protein and lysozyme was analyzed by RT-PCR. Cell toxicity was tested by CCK8 assay. The cell entry of SAR-CoV-2 in HCECs and primary rabbit corneal epithelial cells (RbCECs) was detected by luciferase assay.

          Results

          ACE2 and TMPRSS2 were highly expressed in HCECs. The spike proteins of SARS-CoV-2 stimulated a robust inflammatory response in HCECs, characterized by increased secretion of pro-inflammatory molecules, including IL-6, TNF-α, iNOS, and MCP-1, and pretreatment with lysozyme in HCECs markedly decreased the production of proinflammatory molecules induced by spike proteins. In addition, the inflammatory cytokine TNF-α enhanced the entry of SARS-CoV-2 into HCECs, which can be mitigated by pretreatment with lysozyme.

          Conclusions

          In this study, we analyzed the susceptibility of human corneal epithelial cells to SARS-CoV-2 infection and suggested the protective effects of lysozyme on SARS-CoV-2 infection.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A pneumonia outbreak associated with a new coronavirus of probable bat origin

            Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Characteristics of Ocular Findings of Patients With Coronavirus Disease 2019 (COVID-19) in Hubei Province, China

              Key Points Question What are the ocular manifestations and conjunctival viral prevalence in patients from Hubei province, China, with coronavirus disease 2019 (COVID-19)? Findings In this case series including 38 patients with COVID-19, 12 patients had ocular manifestations, such as epiphora, conjunctival congestion, or chemosis, and these commonly occurred in patients with more severe systemic manifestations. Reverse transcriptase–polymerase chain reaction results were positive for severe acute respiratory syndrome coronavirus 2 in 28 nasopharyngeal swabs and 2 conjunctival swabs, and more significant changes in blood test values appeared in patients with ocular abnormalities. Meaning These data may assist ophthalmologists and others to understand the ocular manifestations of COVID-19, thus enhancing the diagnosis and prevention of the transmission of the disease.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest Ophthalmol Vis Sci
                IOVS
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                17 June 2022
                June 2022
                : 63
                : 6
                : 16
                Affiliations
                [1 ]Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
                [2 ]Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
                Author notes
                Correspondence: Hua Yan, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin 300052, China; zyyyanhua@ 123456tmu.edu.cn .
                Mei Du, Tianjin Medical University, No. 22, Qixiangtai Road, Tianjin 300070, China; dumei@ 123456tmu.edu.cn .

                YS, HZ, and YZ contributed equally to this work.

                Article
                IOVS-22-34597
                10.1167/iovs.63.6.16
                9206495
                4d693be6-ecf5-4fc4-bfa9-fb6cff336c8c
                Copyright 2022 The Authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 02 June 2022
                : 17 January 2022
                Page count
                Pages: 9
                Categories
                Cornea
                Cornea

                lysozyme,coronavirus disease 2019 (covid-19),severe acute respiratory syndrome coronavirus 2 (sars-cov-2),human corneal epithelial cell (hcec),inflammation

                Comments

                Comment on this article