8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Enhanced endoplasmic reticulum SERCA activity by overexpression of hepatic stimulator substance gene prevents hepatic cells from ER stress-induced apoptosis.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the potential pathogenesis of nonalcoholic fatty liver disease (NAFLD) is unclear, increasing evidence indicates that endoplasmic reticulum (ER) stress may link free fatty acids to NAFLD. Since we previously reported that hepatic stimulator substance (HSS) could protect the liver from steatosis, this study is aimed to investigate whether HSS protection could be related with its inhibition on ER stress. The HSS gene was stably transfected into BEL-7402 hepatoma cells and effectively expressed in ER. The palmitic acid (PA)-induced heptocyte lipotoxicity was reproduced in the HSS-transfected cells, and HSS alleviation of the ER stress and apoptosis were subsequently examined. The results showed that PA treatment led to a heavy accumulation of fatty acids within the cells and a remarkable increase in reactive oxygen species (ROS). However, in the HSS-expressing cells, production of ROS was inhibited and ER stress-related marker glucose-regulated protein 78 (GRP-78), sterol regulatory element-binding protein (SREBP), anti-phospho-PRK-1ike ER kinase (p-PERK), anti-phospho-eukaryotic initiation factor 2α (p-eIF2α), and anti-C/EBP homologous protein (CHOP) were downregulated compared with the wild-type or mutant HSS-transfected cells. Furthermore, PA treatment severely impaired the activity of sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), leading to imbalanced calcium homeostasis during ER stress, which could be rescued in the HSS-trasfected cells. The protection provided by HSS to the SERCA is identical to that observed with N-acetyl-l-cysteine (NAC) and sodium dimercaptopropane sulfonate (Na-DMPS), which are two typical free radical scavengers. As a consequence, the rate of ER stress-mediated apoptosis in the HSS-expressing cells was significantly reduced. In conclusion, the protective effect of HSS against ER stress may be associated with the removal of ROS to restore the activity of the SERCA.

          Related collections

          Author and article information

          Journal
          Am. J. Physiol., Cell Physiol.
          American journal of physiology. Cell physiology
          American Physiological Society
          1522-1563
          0363-6143
          Feb 01 2014
          : 306
          : 3
          Affiliations
          [1 ] Department of Cell Biology and Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China.
          Article
          ajpcell.00117.2013
          10.1152/ajpcell.00117.2013
          24284796
          4d6c9767-6dff-4d82-82f4-fe1f97b1c228
          History

          nonalcoholic fatty liver disease,hepatic stimulator substance,augmenter of liver regeneration,SERCA,ER stress

          Comments

          Comment on this article