56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of SNPs and alternative splicing within HGF gene on its expression patterns in Qinchuan cattle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Identification of genetic variants, including SNPs (Single Nucleotide Polymorphisms), CNVs (Copy Number Variations) and alternative splicing, within functional genes has received increasing attention in animal science research. HGF (Hepatocyte Growth Factor) is a very important growth factor that works as a mitogen or a morphogen during tissue growth, development and regeneration. However, to date, the functions of genetic variants within the bovine HGF gene, particularly their effects on mRNA expression, have not been determined well.

          Results

          The present study aimed to perform association analysis between genetic variants and mRNA expression for the bovine HGF gene in Qinchuan cattle using various strategies, including PCR-RFLP (Restriction Fragment Length Polymorphism), qPCR (Quantitative Real-time quantitative PCR), TA cloning, DNA sequencing and bioinformatics analysis. A total of five SNPs were identified and only SV1 locus significantly affected HGF mRNA expression in fetal skeletal muscle ( P < 0.05). Heterozygous genotype individuals showed significantly higher HGF expression ( P < 0.05), which was significantly greater in the “CTCCAGGGTT” combined genotype than that in the “CCCCGGGGTT” combined genotype ( P < 0.05). In addition, two alternative splicing variations, HGF-W and HGF-M, were identified, which resulted from alternative 3′ splice sites of exon 5, and HGF-W showed higher mRNA levels than HGF-M in all tissues.

          Conclusion

          In summary, genetic variations within the HGF gene affected mRNA expression. These findings provide new insight into the molecular characteristics and functions of bovine HGF.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Alternative splicing and evolution: diversification, exon definition and function.

          Over the past decade, it has been shown that alternative splicing (AS) is a major mechanism for the enhancement of transcriptome and proteome diversity, particularly in mammals. Splicing can be found in species from bacteria to humans, but its prevalence and characteristics vary considerably. Evolutionary studies are helping to address questions that are fundamental to understanding this important process: how and when did AS evolve? Which AS events are functional? What are the evolutionary forces that shaped, and continue to shape, AS? And what determines whether an exon is spliced in a constitutive or alternative manner? In this Review, we summarize the current knowledge of AS and evolution and provide insights into some of these unresolved questions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular cloning and expression of human hepatocyte growth factor.

            Hepatocyte growth factor (HGF) is the most potent mitogen for mature parenchymal hepatocytes in primary culture, and seems to be a hepatotrophic factor that acts as a trigger for liver regeneration after partial hepatectomy and liver injury. The partial purification and characterization of HGF have been reported. We have demonstrated that pure HGF from rat platelets is a new growth factor effective at concentrations as low as 1 ng ml-1. The effects of HGF and epidermal growth factor (EGF) are additive. The activity of HGF is not species-specific, although it does not stimulate growth in Swiss 3T3 fibroblasts. HGF has a relative molecular mass (Mr) of 82,000 and is a heterodimer composed of a large alpha-subunit of Mr 69,000 and a small beta-subunit of Mr 34,000. Here we report the amino-acid sequence of human HGF determined by complementary DNA cloning and the expression of biologically active human HGF from COS-1 cells transfected with cloned cDNA. The nucleotide sequence of the human HGF cDNA reveals that both alpha- and beta-chains are contained in a single open reading frame coding for a pre-pro precursor protein of 728 amino acids.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Different levels of alternative splicing among eukaryotes

              Alternative splicing increases transcriptome and proteome diversification. Previous analyses aiming at comparing the rate of alternative splicing between different organisms provided contradicting results. These contradicting results were attributed to the fact that both analyses were dependent on the expressed sequence tag (EST) coverage, which varies greatly between the tested organisms. In this study we compare the level of alternative splicing among eight different organisms. By employing an EST independent approach we reveal that the percentage of genes and exons undergoing alternative splicing is higher in vertebrates compared with invertebrates. We also find that alternative exons of the skipping type are flanked by longer introns compared to constitutive ones, whereas alternative 5′ and 3′ splice sites events are generally not. In addition, although the regulation of alternative splicing and sizes of introns and exons have changed during metazoan evolution, intron retention remained the rarest type of alternative splicing, whereas exon skipping is more prevalent and exhibits a slight increase, from invertebrates to vertebrates. The difference in the level of alternative splicing suggests that alternative splicing may contribute greatly to the mammal higher level of phenotypic complexity, and that accumulation of introns confers an evolutionary advantage as it allows increasing the number of alternative splicing forms.
                Bookmark

                Author and article information

                Contributors
                chenhong1212@263.net
                Journal
                J Anim Sci Biotechnol
                J Anim Sci Biotechnol
                Journal of Animal Science and Biotechnology
                BioMed Central (London )
                1674-9782
                2049-1891
                22 December 2015
                22 December 2015
                2015
                : 6
                : 55
                Affiliations
                [ ]College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
                [ ]Institute of Cellular and Molecular Biology, Xuzhou Normal University, Xuzhou, Jiangsu 221116 China
                Article
                59
                10.1186/s40104-015-0059-3
                4688982
                4d979189-f48a-43ef-87ca-e52cb2557905
                © Cai et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 7 April 2015
                : 9 December 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Animal science & Zoology
                alternative splicing,expression,hgf,qinchuan cattle,snps
                Animal science & Zoology
                alternative splicing, expression, hgf, qinchuan cattle, snps

                Comments

                Comment on this article