2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Matched increases in cerebral artery shear stress, irrespective of stimulus, induce similar changes in extra-cranial arterial diameter in humans

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanistic role of arterial shear stress in the regulation of cerebrovascular responses to physiological stimuli (exercise and hypercapnia) is poorly understood. We hypothesised that, if shear stress is a key regulator of arterial dilation, then matched increases in shear, induced by distinct physiological stimuli, would trigger similar dilation of the large extra-cranial arteries. Participants ( n = 10) participated in three 30-min experimental interventions, each separated by ≥48 h: (1) mild-hypercapnia (FICO2:∼0.045); (2) submaximal cycling (EX; 60%HRreserve); or (3) resting (time-matched control, CTRL). Blood flow, diameter, and shear rate were assessed (via Duplex ultrasound) in the internal carotid and vertebral arteries (ICA, VA) at baseline, during and following the interventions. Hypercapnia and EX produced similar elevations in blood flow and shear rate through the ICA and VA ( p < 0.001), which were both greater than CTRL. Vasodilation of ICA and VA diameter in response to hypercapnia (5.3 ± 0.8 and 4.4 ± 2.0%) and EX (4.7 ± 0.7 and 4.7 ± 2.2%) were similar, and greater than CTRL ( p < 0.001). Our findings indicate that matched levels of shear, irrespective of their driving stimulus, induce similar extra-cranial artery dilation. We demonstrate, for the first time in humans, an important mechanistic role for the endothelium in regulating cerebrovascular response to common physiological stimuli in vivo.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function.

          There is considerable utility in the use of transcranial Doppler ultrasound (TCD) to assess cerebrovascular function. The brain is unique in its high energy and oxygen demand but limited capacity for energy storage that necessitates an effective means of regional blood delivery. The relative low cost, ease-of-use, non-invasiveness, and excellent temporal resolution of TCD make it an ideal tool for the examination of cerebrovascular function in both research and clinical settings. TCD is an efficient tool to access blood velocities within the cerebral vessels, cerebral autoregulation, cerebrovascular reactivity to CO(2), and neurovascular coupling, in both physiological states and in pathological conditions such as stroke and head trauma. In this review, we provide: (1) an overview of TCD methodology with respect to other techniques; (2) a methodological synopsis of the cerebrovascular exam using TCD; (3) an overview of the physiological mechanisms involved in regulation of the cerebral blood flow; (4) the utility of TCD for assessment of cerebrovascular pathology; and (5) recommendations for the assessment of four critical and complimentary aspects of cerebrovascular function: intra-cranial blood flow velocity, cerebral autoregulation, cerebral reactivity, and neurovascular coupling. The integration of these regulatory mechanisms from an integrated systems perspective is discussed, and future research directions are explored. Copyright © 2011 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cerebral blood flow during exercise: mechanisms of regulation.

            The response of cerebral vasculature to exercise is different from other peripheral vasculature; it has a small vascular bed and is strongly regulated by cerebral autoregulation and the partial pressure of arterial carbon dioxide (Pa(CO(2))). In contrast to other organs, the traditional thinking is that total cerebral blood flow (CBF) remains relatively constant and is largely unaffected by a variety of conditions, including those imposed during exercise. Recent research, however, indicates that cerebral neuronal activity and metabolism drive an increase in CBF during exercise. Increases in exercise intensity up to approximately 60% of maximal oxygen uptake produce elevations in CBF, after which CBF decreases toward baseline values because of lower Pa(CO(2)) via hyperventilation-induced cerebral vasoconstriction. This finding indicates that, during heavy exercise, CBF decreases despite the cerebral metabolic demand. In contrast, this reduced CBF during heavy exercise lowers cerebral oxygenation and therefore may act as an independent influence on central fatigue. In this review, we highlight methodological considerations relevant for the assessment of CBF and then summarize the integrative mechanisms underlying the regulation of CBF at rest and during exercise. In addition, we examine how CBF regulation during exercise is altered by exercise training, hypoxia, and aging and suggest avenues for future research.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Crucial role of endothelium in the vasodilator response to increased flow in vivo

                Bookmark

                Author and article information

                Journal
                Journal of Cerebral Blood Flow & Metabolism
                J Cereb Blood Flow Metab
                SAGE Publications
                0271-678X
                1559-7016
                November 10 2017
                November 10 2017
                : 0271678X1773922
                Affiliations
                [1 ]Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
                [2 ]Centre for Hearth Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Vancouver, BC, Canada
                [3 ]Research Institute for Sport and Exercise Sciences, John Moores Liverpool University, UK
                Article
                10.1177/0271678X17739220
                6501503
                29125372
                4dc57568-befa-42a8-98ad-4bdd216c7be2
                © 2017
                History

                Comments

                Comment on this article