1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zinc and nitrogen synergistic act on root-to-shoot translocation and preferential distribution in rice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Highlights

          • Zn promoted translocation and distribution of N into leaves and brown rice.

          • Zn induced the expression levels of N transporter genes in both root and shoot.

          • Zn increased the N assimilation level in leaves.

          • N promoted translocation and distribution of Zn into leaves and brown rice.

          • N up-regulated the expression levels of Zn transporter genes in both root and shoot.

          Abstract

          Introduction

          Multiple studies have shown strong relationships between different nutrients in plants, and the important role of N in Zn acquisition and translocation has been recognized.

          Objectives

          The aim of this study was to estimate the effect of Zn on N uptake, translocation, and distribution in rice as well as the corresponding molecular mechanisms. We also aimed to evaluate the impact of N on the Zn content in rice grains which is closely related to the Zn nutrition in humans with rice-based diets.

          Methods

          We conducted both field trials and hydroponic cultures of two rice cultivars to analyze the growth and yield, the uptake, translocation, and distribution of N and Zn, as well as the expression of N transport and assimilation genes, and the Zn transporter genes under different combined applications of N and Zn.

          Results

          Zn supply promoted the root-to-shoot translocation (12–70% increasing) and distribution of N into the leaves (19–49% increasing) and brown rice (6–9% increasing) and increased the rice biomass (by 14–35%) and yield (by 13–63%). Zn supply induced the expression of OsNRTs and OsAMTs in both roots and shoots, but repressed the expression of OsNiR2, OsGS1;2, and OsFd-GOGAT in roots, whereas it activated the expression of OsNiR2, OsGS1;1, OsGS2, and OsFd-GOGAT in the shoots. Moreover, the enzyme activities of nitrite reductase, nitrate reductase, and glutamine synthetase increased and the free NO 3 concentration decreased, but the soluble protein concentration increased significantly in the shoots after Zn supply. Synergistically, N significantly facilitated the root-to-shoot translocation (1.68–11.66 fold) and distribution of Zn into the leaves (1.68–6.37 fold) and brown rice (7–12% increasing) and upregulated the expression levels of Zn transporter genes in both the roots and shoots.

          Conclusions

          We propose a working model of the cross-talk between Zn and N in rice plants, which will aid in the appropriate combined application of Zn and N fertilizers in the field to improve both N utilization in plants and Zn nutrition in humans with rice-based diets.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture.

          Productive agriculture needs a large amount of expensive nitrogenous fertilizers. Improving nitrogen use efficiency (NUE) of crop plants is thus of key importance. NUE definitions differ depending on whether plants are cultivated to produce biomass or grain yields. However, for most plant species, NUE mainly depends on how plants extract inorganic nitrogen from the soil, assimilate nitrate and ammonium, and recycle organic nitrogen. Efforts have been made to study the genetic basis as well as the biochemical and enzymatic mechanisms involved in nitrogen uptake, assimilation, and remobilization in crops and model plants. The detection of the limiting factors that could be manipulated to increase NUE is the major goal of such research. An overall examination of the physiological, metabolic, and genetic aspects of nitrogen uptake, assimilation and remobilization is presented in this review. The enzymes and regulatory processes manipulated to improve NUE components are presented. Results obtained from natural variation and quantitative trait loci studies are also discussed. This review presents the complexity of NUE and supports the idea that the integration of the numerous data coming from transcriptome studies, functional genomics, quantitative genetics, ecophysiology and soil science into explanatory models of whole-plant behaviour will be promising.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Zinc in plants.

            Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil-root-shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn(2+) at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn-limited crop growth. Substantial within-species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta-analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies.

              Asian cultivated rice (Oryza sativa L.) consists of two main subspecies, indica and japonica. Indica has higher nitrate-absorption activity than japonica, but the molecular mechanisms underlying that activity remain elusive. Here we show that variation in a nitrate-transporter gene, NRT1.1B (OsNPF6.5), may contribute to this divergence in nitrate use. Phylogenetic analysis revealed that NRT1.1B diverges between indica and japonica. NRT1.1B-indica variation was associated with enhanced nitrate uptake and root-to-shoot transport and upregulated expression of nitrate-responsive genes. The selection signature of NRT1.1B-indica suggests that nitrate-use divergence occurred during rice domestication. Notably, field tests with near-isogenic and transgenic lines confirmed that the japonica variety carrying the NRT1.1B-indica allele had significantly improved grain yield and nitrogen-use efficiency (NUE) compared to the variety without that allele. Our results show that variation in NRT1.1B largely explains nitrate-use divergence between indica and japonica and that NRT1.1B-indica can potentially improve the NUE of japonica.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Adv Res
                J Adv Res
                Journal of Advanced Research
                Elsevier
                2090-1232
                2090-1224
                20 April 2021
                January 2022
                20 April 2021
                : 35
                : 187-198
                Affiliations
                [a ]Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
                [b ]National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan 430070, China
                Author notes
                [* ]Corresponding author. caihongmei@ 123456mail.hzau.edu.cn
                [1]

                These authors contributed equally.

                Article
                S2090-1232(21)00069-2
                10.1016/j.jare.2021.04.005
                8721242
                35003800
                4e73eaa2-02d0-4ba1-830b-cd24a78e1682
                © 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 15 February 2021
                : 6 April 2021
                : 15 April 2021
                Categories
                Agricultural Science

                nitrogen,zinc,interaction,translocation,distribution,rice,gly, guangliangyou 35,nip, nipponbare,n, nitrogen,zn, zinc,nrt, nitrate transporter,amt, ammonium transporter,nir, nitrite reductase,nr, nitrate reductase,gs, glutamine synthetase,gogat, glutamate synthase,zip, zrt, irt-like protein

                Comments

                Comment on this article