3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heterologous expression of AHL lactonase AiiK by Lactobacillus casei MCJΔ1 with great quorum quenching ability against Aeromonas hydrophila AH-1 and AH-4

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Nowadays, microbial infections have caused increasing economic losses in aquaculture industry and deteriorated worldwide environments. Many of these infections are caused by opportunistic pathogens through cell-density mediated quorum sensing (QS). The disruption of QS, known as quorum quenching (QQ), is an effective and promising way to prevent and control pathogens, driving it be the potential bio-control agents. In our previous studies, AHL lactonase AiiK was identified with many characteristics, and constitutive expression vector pELX1 was constructed to express heterologous proteins in Lactobacillus casei MCJΔ1 ( L. casei MCJΔ1). In this study, recombinant strain pELCW- aiiK/ L. casei MCJΔ1 ( LcAiiK) and wild-type Aeromonas hydrophila ( A. hydrophila) were co-cultured to test the QQ ability of LcAiiK against A. hydrophila.

          Results

          A cell wall-associated expression vector pELCW for L. casei MCJΔ1 was constructed. Localization assays revealed that the expressed AiiK was anchored at the surface layer of LcAiiK via vector pELCW- aiiK. LcAiiK (OD 600 = 0.5) degraded 24.13 μM of C 6-HSL at 2 h, 40.99 μM of C 6-HSL at 12 h, and 46.63 μM of C 6-HSL at 24 h. Over 50% LcAiiK cells maintained the pELCW- aiiK plasmid after 15 generations of cultivation without erythromycin. Furthermore, LcAiiK inhibited the swimming motility, extracellular proteolytic activity, haemolytic activity and biofilm formation of A. hydrophila AH-1 and AH-4.

          Conclusion

          The AHL lactonase AiiK is firstly and constitutively expressed at the surface layer of L. casei MCJΔ1. LcAiiK displayed considerable AHL lactonase activity and great QQ abilities against A. hydrophila AH-1 and AH-4 by attenuating their QS processes instead of killing them. Therefore, the LcAiiK can be exploited as an anti-pathogenic drug or a bio-control agent to control the AHL-mediated QS of pathogenic bacteria.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Gene splicing and mutagenesis by PCR-driven overlap extension.

          Extension of overlapping gene segments by PCR is a simple, versatile technique for site-directed mutagenesis and gene splicing. Initial PCRs generate overlapping gene segments that are then used as template DNA for another PCR to create a full-length product. Internal primers generate overlapping, complementary 3' ends on the intermediate segments and introduce nucleotide substitutions, insertions or deletions for site-directed mutagenesis, or for gene splicing, encode the nucleotides found at the junction of adjoining gene segments. Overlapping strands of these intermediate products hybridize at this 3' region in a subsequent PCR and are extended to generate the full-length product amplified by flanking primers that can include restriction enzyme sites for inserting the product into an expression vector for cloning purposes. The highly efficient generation of mutant or chimeric genes by this method can easily be accomplished with standard laboratory reagents in approximately 1 week.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The evolution of cooperation within the gut microbiota

            Cooperative phenotypes are considered central to the functioning of microbial communities in many contexts, including communication via quorum sensing, biofilm formation, antibiotic resistance, and pathogenesis 1-5 . The human intestine houses a dense and diverse microbial community critical to health 1,2,4-9 , yet we know little about cooperation within this important ecosystem. Here we experimentally test for evolved cooperation within the Bacteroidales, the dominant Gram-negative bacteria of the human intestine. We show that during growth on certain dietary polysaccharides, the model member Bacteroides thetaiotaomicron exhibits only limited cooperation. Although this organism digests these polysaccharides extracellularly, mutants lacking this ability are outcompeted. In contrast, we discovered a dedicated cross-feeding enzyme system in the prominent gut symbiont Bacteroides ovatus, which digests polysaccharide at a cost to itself but at a benefit to another species. Using in vitro systems and gnotobiotic mouse colonization models, we find that extracellular digestion of inulin increases the fitness of B.ovatus due to reciprocal benefits when it feeds other gut species such as Bacteroides vulgatus. This is a rare example of naturally-evolved cooperation between microbial species. Our study reveals both the complexity and importance of cooperative phenotypes within the mammalian intestinal microbiota.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent.

              The opportunistic human pathogen Pseudomonas aeruginosa is the predominant micro-organism of chronic lung infections in cystic fibrosis (CF) patients. P. aeruginosa colonizes the CF lungs by forming biofilm structures in the alveoli. In the biofilm mode of growth the bacteria are highly tolerant to otherwise lethal doses of antibiotics and are protected from bactericidal activity of polymorphonuclear leukocytes (PMNs). P. aeruginosa controls the expression of many of its virulence factors by means of a cell-cell communication system termed quorum sensing (QS). In the present report it is demonstrated that biofilm bacteria in which QS is blocked either by mutation or by administration of QS inhibitory drugs are sensitive to treatment with tobramycin and H2O2, and are readily phagocytosed by PMNs, in contrast to bacteria with functional QS systems. In contrast to the wild-type, QS-deficient biofilms led to an immediate respiratory-burst activation of the PMNs in vitro. In vivo QS-deficient mutants provoked a higher degree of inflammation. It is suggested that quorum signals and QS-inhibitory drugs play direct and opposite roles in this process. Consequently, the faster and highly efficient clearance of QS-deficient bacteria in vivo is probably a two-sided phenomenon: down regulation of virulence and activation of the innate immune system. These data also suggest that a combination of the action of PMNs and QS inhibitors along with conventional antibiotics would eliminate the biofilm-forming bacteria before a chronic infection is established.
                Bookmark

                Author and article information

                Contributors
                shumiaozhao@mail.hzau.edu.cn
                Journal
                Microb Cell Fact
                Microb Cell Fact
                Microbial Cell Factories
                BioMed Central (London )
                1475-2859
                7 October 2020
                7 October 2020
                2020
                : 19
                : 191
                Affiliations
                [1 ]GRID grid.35155.37, ISNI 0000 0004 1790 4137, State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, , Huazhong Agricultural University, ; Wuhan, 430070 China
                [2 ]GRID grid.464330.6, Institute of Agricultural Resources and Regional Planning, CAAS, ; Beijing, 100081 China
                Author information
                http://orcid.org/0000-0001-6047-8880
                Article
                1448
                10.1186/s12934-020-01448-4
                7542731
                33028330
                4e8fc698-440c-44af-aa59-c70ad86004c9
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 21 November 2019
                : 25 September 2020
                Funding
                Funded by: Fundamental Research Funds for Central Universities
                Award ID: 2662018JC016
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Biotechnology
                quorum sensing,quorum quenching,ahl lactonase aiik,lactobacillus casei mcjδ1,aeromonas hydrophila

                Comments

                Comment on this article