2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of sodium removal in peritoneal dialysis patients treated by continuous ambulatory and automated peritoneal dialysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Optimal fluid balance for peritoneal dialysis (PD) patients requires both water and sodium removal. Previous studies have variously reported that continuous ambulatory peritoneal dialysis (CAPD) removes more or equivalent amounts of sodium than automated PD (APD) cyclers. We therefore wished to determine peritoneal dialysate losses with different PD treatments.

          Methods

          Peritoneal and urinary sodium losses were measured in 24-h collections of urine and PD effluent in patients attending for their first assessment of peritoneal membrane function. We adjusted fluid and sodium losses for CAPD patients for the flush before fill technique.

          Results

          We reviewed the results from 659 patients, mean age 57 ± 16 years, 56.3% male, 38.9% diabetic, 24.0% treated by CAPD, 22.5% by APD and 53.5% APD with a day-time exchange, with icodextrin prescribed to 72.8% and 22.7 g/L glucose to 31.7%. Ultrafiltration was greatest for CAPD 650 (300–1100) vs 337 (103–598) APD p < 0.001, vs 474 (171–830) mL/day for APD with a day exchange. CAPD removed most sodium 79 (33–132) vs 23 (− 2 to 51) APD p < 0.001, and 51 (9–91) for APD with a day exchange, and after adjustment for the CAPD flush before fill 57 (20–113), p < 0.001 vs APD. APD patients with a day exchanged used more hypertonic glucose dialysates [0 (0–5) vs CAPD 0 (0–1) L], p < 0.001.

          Conclusion

          CAPD provides greater ultrafiltration and sodium removal than APD cyclers, even after adjusting for the flush-before fill, despite greater hypertonic usage by APD cyclers. Ultrafiltration volume and sodium removal were similar between CAPD and APD with a day fill.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Peritonitis remains the major clinical complication of peritoneal dialysis: the London, UK, peritonitis audit 2002-2003.

          Over the past two decades, the rate of peritonitis in patients treated by peritoneal dialysis (PD) has been significantly reduced. However, peritonitis remains a major complication of PD, accounting for considerable mortality and hospitalization among PD patients. To compare the outcome of peritonitis in a large unselected group of PD patients with that from single-center and selected groups. We audited the outcome of peritonitis in PD patients attending the 12 PD units in the Thames area in 2002 and 2003. There were 538 patients on continuous ambulatory PD (CAPD) and 325 patients on automated PD (APD) and/or continuous cycling PD (CCPD) at the end of 2002, and 635 CAPD and 445 APD/CCPD patients at the end of 2003. There were 1467 episodes of PD peritonitis during the 2-year period, including 129 recurrent episodes, with the average number of months between peritonitis episodes being 14.7 for CAPD and 18.1 for APD/CCPD, p < 0.05. However there was considerable variation between units. Coagulase-negative staphylococcus (CoNS) was the most common cause, accounting for around 30% of all peritonitis episodes, including recurrences, followed by non-pseudomonas gram negatives and Staphylococcus aureus. Cure rates were 77.2% for CoNS, 46.6% for S. aureus, and 7.7% for methicillin-resistant S. aureus. The cure rate for pseudomonas was 21.4%, and other gram negatives 56.7%. In total, there were 351 episodes of culture-negative peritonitis, with an average cure rate of 76.9%. Cure rates were higher for those centers that used a combination of intraperitoneal gentamicin and cephalosporins than those centers that used oral-based regimes. A total of 296 PD catheters were removed as a direct consequence of PD peritonitis: 121 due to gram-positive and 123 due to gram-negative organisms. Only 49 catheters were reinserted and the patients returned to PD. 52 patients died during or subsequent to their episode of PD peritonitis, with an overall mortality rate of 3.5%. This audit showed that, in a large unselected population of PD patients, the incidence of peritonitis was significantly greater than that reported in single-center short-term studies, and varied from unit to unit. Similarly, the success of treating PD peritonitis varied not only with the cause of the infection but also from unit to unit. PD peritonitis remains a major cause of patients discontinuing PD and switching to hemodialysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of Crystalloid versus Colloid Osmosis across the Peritoneal Membrane

            Background Osmosis drives transcapillary ultrafiltration and water removal in patients treated with peritoneal dialysis. Crystalloid osmosis, typically induced by glucose, relies on dialysate tonicity and occurs through endothelial aquaporin-1 water channels and interendothelial clefts. In contrast, the mechanisms mediating water flow driven by colloidal agents, such as icodextrin, and combinations of osmotic agents have not been evaluated. Methods We used experimental models of peritoneal dialysis in mouse and biophysical studies combined with mathematical modeling to evaluate the mechanisms of colloid versus crystalloid osmosis across the peritoneal membrane and to investigate the pathways mediating water flow generated by the glucose polymer icodextrin. Results In silico modeling and in vivo studies showed that deletion of aquaporin-1 did not influence osmotic water transport induced by icodextrin but did affect that induced by crystalloid agents. Water flow induced by icodextrin was dependent upon the presence of large, colloidal fractions, with a reflection coefficient close to unity, a low diffusion capacity, and a minimal effect on dialysate osmolality. Combining crystalloid and colloid osmotic agents in the same dialysis solution strikingly enhanced water and sodium transport across the peritoneal membrane, improving ultrafiltration efficiency over that obtained with either type of agent alone. Conclusions These data cast light on the molecular mechanisms involved in colloid versus crystalloid osmosis and characterize novel osmotic agents. Dialysis solutions combining crystalloid and colloid particles may help restore fluid balance in patients treated with peritoneal dialysis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Survival of Functionally Anuric Patients on Automated Peritoneal Dialysis: The European APD Outcome Study

              E Brown (2003)
                Bookmark

                Author and article information

                Contributors
                srsingh9@hotmail.com
                44-2074726457 , andrewdavenport@nhs.net
                Journal
                J Nephrol
                J. Nephrol
                Journal of Nephrology
                Springer International Publishing (Cham )
                1121-8428
                1724-6059
                9 September 2019
                9 September 2019
                2019
                : 32
                : 6
                : 1011-1019
                Affiliations
                GRID grid.83440.3b, ISNI 0000000121901201, UCL Department of Nephrology, Royal Free Hospital, , University College London, ; Rowland Hill Street, London, NW3 2PF UK
                Author information
                http://orcid.org/0000-0002-4467-6833
                Article
                646
                10.1007/s40620-019-00646-7
                6821665
                31502219
                4f9dd51f-6a41-4dc4-94f9-8ffe87e7f333
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 28 June 2019
                : 31 August 2019
                Categories
                Original Article
                Custom metadata
                © Italian Society of Nephrology 2019

                peritoneal dialysis,sodium,ultrafiltration,blood pressure,capd,apd,icodextrin,hypertonic glucose

                Comments

                Comment on this article