8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Matr3 reshapes m6A modification complex to alleviate macrophage inflammation during atherosclerosis

      , , , , , ,
      Clinical Immunology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atherosclerosis, characterized as the chronic inflammation of the arterial wall, is one of the leading causes of coronary artery disease (CAD), and macrophages are found to play essential roles in the initiation and progression of inflammation in atherosclerosis. N6-methyladenosine (m6A) modification, as the most abundant epi-transcriptomic modification in mRNA, is found to mediate the atherogenic inflammatory cascades in vascular endothelium. The detailed molecular mechanism of m6A methylation regulating inflammatory response during atherosclerosis is still not fully known. In this study, we find oxidized low-density lipoprotein (oxLDL) stimulation increases methyltransferases Mettl3 and Mettl14 expressions in macrophages, whereas the total m6A modification level in macrophages decreases under oxLDL stimulation. Matrin-3 (Matr3), an RNA binding protein, is identified to play a suppressive role on oxLDL-mediated macrophage inflammatory responses through inhibiting activation of pro-inflammatory signaling, mitogen-activated protein kinase (Mapk) by m6A-mediated mRNA decay via regulating the formation of Mettl3-Mettl14 complex. Moreover, we find that Matr3 expression decreases in the oxLDL-stimulated macrophages, and the peripheral blood-derived monocytes from patients with CAD, and overexpression of Matr3 significantly alleviates atherosclerosis development in vivo. Our study for the first time clarifies the role of Matr3 on macrophage inflammatory responses during atherosclerotic development, and supplies deep understanding on the relationship of m6A modification and inflammatory responses in atherosclerosis.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers

          Cellular RNAs are naturally decorated with a variety of chemical modifications. The structural diversity of the modified nucleosides provides regulatory potential to sort groups of RNAs for organized metabolism and functions, thus affecting gene expression. Recent years have witnessed a burst of interest in and understanding of RNA modification biology, thanks to the emerging transcriptome-wide sequencing methods for mapping modified sites, highly-sensitive mass spectrometry for precise modification detection and quantification, and extensive characterization of the modification “effectors”, including enzymes (“writers” and “erasers”) that alter the modification level and binding proteins (“readers”) that recognize the chemical marks. However, challenges remain due to the vast heterogeneity in expression abundance of different RNA species, further complicated by divergent cell-type-specific and tissue-specific expression and localization of the effectors as well as modifications. In this review, we highlight recent progress in understanding the function of N 6 -methyladenosine (m 6 A), the most abundant internal mark on eukaryotic messenger RNA (mRNA), in light of the specific biological contexts of m 6 A effectors. We emphasize the importance of context for RNA modification regulation and function. RNA N 6 -methyladenosine (m 6 A) has emerged as a multifaceted controller for gene expression regulation, mediated through its effector proteins—writers, readers, and erasers. Shi et al . review recent advances in the mechanistic understandings of m 6 A effectors in various biological systems and cellular responses, emphasizing cellular and molecular contexts as important determinants of RNA modification functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophages in atherosclerosis: a dynamic balance.

            Atherosclerosis is a chronic inflammatory disease that arises from an imbalance in lipid metabolism and a maladaptive immune response driven by the accumulation of cholesterol-laden macrophages in the artery wall. Through the analysis of the progression and regression of atherosclerosis in animal models, there is a growing understanding that the balance of macrophages in the plaque is dynamic and that both macrophage numbers and the inflammatory phenotype influence plaque fate. In this Review, we summarize recently identified pro- and anti-inflammatory pathways that link lipid and inflammation biology with the retention of macrophages in plaques, as well as factors that have the potential to promote their egress from these sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The immune system in atherosclerosis.

              Cardiovascular disease, a leading cause of mortality worldwide, is caused mainly by atherosclerosis, a chronic inflammatory disease of blood vessels. Lesions of atherosclerosis contain macrophages, T cells and other cells of the immune response, together with cholesterol that infiltrates from the blood. Targeted deletion of genes encoding costimulatory factors and proinflammatory cytokines results in less disease in mouse models, whereas interference with regulatory immunity accelerates it. Innate as well as adaptive immune responses have been identified in atherosclerosis, with components of cholesterol-carrying low-density lipoprotein triggering inflammation, T cell activation and antibody production during the course of disease. Studies are now under way to develop new therapies based on these concepts of the involvement of the immune system in atherosclerosis.
                Bookmark

                Author and article information

                Journal
                Clinical Immunology
                Clinical Immunology
                Elsevier BV
                15216616
                December 2022
                December 2022
                : 245
                : 109176
                Article
                10.1016/j.clim.2022.109176
                36368640
                4ff69bbb-912d-4bcd-9958-ad78717e9e84
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article