6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Melanoma-related changes in skin microbiome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Final version of 2009 AJCC melanoma staging and classification.

          To revise the staging system for cutaneous melanoma on the basis of data from an expanded American Joint Committee on Cancer (AJCC) Melanoma Staging Database. The melanoma staging recommendations were made on the basis of a multivariate analysis of 30,946 patients with stages I, II, and III melanoma and 7,972 patients with stage IV melanoma to revise and clarify TNM classifications and stage grouping criteria. Findings and new definitions include the following: (1) in patients with localized melanoma, tumor thickness, mitotic rate (histologically defined as mitoses/mm(2)), and ulceration were the most dominant prognostic factors. (2) Mitotic rate replaces level of invasion as a primary criterion for defining T1b melanomas. (3) Among the 3,307 patients with regional metastases, components that defined the N category were the number of metastatic nodes, tumor burden, and ulceration of the primary melanoma. (4) For staging purposes, all patients with microscopic nodal metastases, regardless of extent of tumor burden, are classified as stage III. Micrometastases detected by immunohistochemistry are specifically included. (5) On the basis of a multivariate analysis of patients with distant metastases, the two dominant components in defining the M category continue to be the site of distant metastases (nonvisceral v lung v all other visceral metastatic sites) and an elevated serum lactate dehydrogenase level. Using an evidence-based approach, revisions to the AJCC melanoma staging system have been made that reflect our improved understanding of this disease. These revisions will be formally incorporated into the seventh edition (2009) of the AJCC Cancer Staging Manual and implemented by early 2010.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome.

            Commensal bacteria in the colon may play a role in colorectal cancer (CRC) development. Recent studies from North America showed that Fusobacterium nucleatum (Fn) infection is over-represented in disease tissue versus matched normal tissue in CRC patients. Using quantitative real-time polymerase chain reaction (qPCR) of DNA extracted from colorectal tissue biopsies and surgical resections of three European cohorts totalling 122 CRC patients, we found an over-abundance of Fn in cancerous compared to matched normal tissue (p < 0.0001). To determine whether Fn infection is an early event in CRC development, we assayed Fn in colorectal adenoma (CRA) tissue from 52 Irish patients. While for all CRAs the Fn level was not statistically significantly higher in disease versus normal tissue (p = 0.06), it was significantly higher for high-grade dysplasia (p = 0.015). As a secondary objective, we determined that CRC patients with low Fn levels had a significantly longer overall survival time than patients with moderate and high levels of the bacterium (p = 0.008). The investigation of Fn as a potential non-invasive biomarker for CRC screening showed that, while Fn was more abundant in stool samples from CRC patients compared to adenomas or controls, the levels in stool did not correlate with cancer or adenoma tissue levels from the same individuals. This is the first study examining Fn in the colonic tissue and stool of European CRC and CRA patients, and suggests Fn as a novel risk factor for disease progression from adenoma to cancer, possibly affecting patient survival outcomes. Our results highlight the potential of Fn detection as a diagnostic and prognostic determinant in CRC patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functions of the skin microbiota in health and disease.

              The skin, the human body's largest organ, is home to a diverse and complex variety of innate and adaptive immune functions. Despite this potent immune system present at the cutaneous barrier, the skin encourages colonization by microorganisms. Characterization these microbial communities has enhanced our knowledge of the ecology of organisms present in normal skin; furthermore, studies have begun to bring to light the intimate relationships shared between host and resident microbes. In particular, it is apparent that just as host immunological factors and behaviors shape the composition of these communities, microbes present on the skin greatly impact the functions of human immunity. Thus, today the skin immune system should be considered a collective mixture of elements from the host and microbes acting in a mutualistic relationship. In this article we will review recent findings of the interactions of skin microbial communities with host immunity, and discuss the role that dysbiosis of these communities plays in diseases of the skin.
                Bookmark

                Author and article information

                Journal
                Folia Microbiologica
                Folia Microbiol
                Springer Science and Business Media LLC
                0015-5632
                1874-9356
                May 2019
                December 15 2018
                May 2019
                : 64
                : 3
                : 435-442
                Article
                10.1007/s12223-018-00670-3
                30554379
                501b7923-441b-4921-9647-5f7828d147ec
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article