3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Elite wheelchair rugby: a quantitative analysis of chair configuration in Australia

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Biomechanics and physiology in active manual wheelchair propulsion.

          Manual wheelchair propulsion in daily life and sports is increasingly being studied. Initially, an engineering and physiological perspective was taken. More recently a concomitant biomechanics interest is seen. Themes of biomechanical and physiological studies today are performance enhancing aspects of wheelchair use and the ergonomics of wheelchair design. Apart from the propulsion technique the focus of biomechanics research of manual wheelchair propulsion is mainly towards injury mechanisms, especially phenomena of overuse to the upper extremity. Obviously, the vehicle mechanics of wheelchairs must be included within this biological framework. Scientific research is progressing, but is still hampered by methodological limitations, such as the heterogeneity and small numbers of the population at study as well as the inconsistency of employed technologies and methodologies. There is a need for consensus regarding methodology and research strategy, and a strong need for collaboration to improve the homogeneity and size of subject groups and thus the power of the experimental results. Thus a sufficiently strong knowledge database will emerge, leading to an evidence-base of performance enhancing factors and the understanding of the risks of wheelchair sports and long-term wheelchair use. In the light of the current biomechanical and physiological knowledge of manual wheelchair propulsion there seems to be a need for the stimulation of other than hand rim propelled manual wheelchairs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports.

            Optimizing mobility performance in wheelchair court sports (basketball, rugby and tennis) is dependent on a combination of factors associated with the user, the wheelchair and the interfacing between the two. Substantial research has been attributed to the wheelchair athlete yet very little has focused on the role of the wheelchair and the wheelchair-user combination. This article aims to review relevant scientific literature that has investigated the effects of wheelchair configuration on aspects of mobility performance from an ergonomics perspective. Optimizing performance from an ergonomics perspective requires a multidisciplinary approach. This has resulted in laboratory-based investigations incorporating a combination of physiological and biomechanical analyses to assess the efficiency, health/safety and comfort of various wheelchair configurations. To a lesser extent, field-based testing has also been incorporated to determine the effects of wheelchair configuration on aspects of mobility performance specific to the wheelchair court sports. The available literature has demonstrated that areas of seat positioning, rear wheel camber, wheel size and hand-rim configurations can all influence the ergonomics of wheelchair performance. Certain configurations have been found to elevate the physiological demand of wheelchair propulsion, others have been associated with an increased risk of injury and some have demonstrated favourable performance on court. A consideration of all these factors is required to identify optimal wheelchair configurations. Unfortunately, a wide variety of different methodologies have immerged between studies, many of which are accompanied by limitations, thus making the identification of optimal configurations problematic. When investigating an area of wheelchair configuration, many studies have failed to adequately standardize other areas, which has prevented reliable cause and effect relationships being established. In addition, a large number of studies have explored the effects of wheelchair configuration in either able-bodied populations or in daily life or racing wheelchairs. As such, the findings are not specific and transferable to athletes competing in the wheelchair court sports. This review presents evidence about the effects of wheelchair configuration on aspects of mobility performance specific to the wheelchair court sports to better inform athletes, coaches and manufacturers about the consequences of their selections. It also provides researchers with guidance on the design of future investigations into areas of wheelchair configuration, which are essential.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Towards evidence-based classification in wheelchair sports: impact of seating position on wheelchair acceleration.

              In most Paralympic wheelchair sports, active trunk range of movement is assessed by observing shoulder girdle excursion during active trunk movements and is a key determinant of an athlete's class. However, to date research evaluating the impact of reduced trunk range of movement on wheelchair sports performance has not been conducted. In the present study, 15 non-disabled male participants performed two 20-s sprints on a wheelchair ergometer in each of three seating positions. Positions were typical of those used to enhance sitting stability in wheelchair sport and each impacted available trunk range of movement differently: condition-90 (seated with thighs horizontal; unrestricted range of movement) condition-45 (seated with thighs in 45°), and condition-0 (seated with hips maximally flexed; minimum range of movement). In condition-90, the trunk only actively contributed to the first push; for the remainder of the sprint, the trunk was held almost isometrically at 48.2° to the horizontal (range 42.1-56.4°). Similar patterns were observed for both condition-45 and condition-0. Compared with condition-90, participants in condition-0 had reduced capacity to accelerate of statistical (P < 0.05) and practical significance. These findings are an important initial step towards evidence-based decision making in classification. Future research should evaluate the individual and collective impact of other factors that affect the trunk's contribution to wheelchair sports performance, including strapping, seating position, and impairments of trunk muscle power and coordination.
                Bookmark

                Author and article information

                Journal
                Sports Engineering
                Sports Eng
                Springer Science and Business Media LLC
                1369-7072
                1460-2687
                September 2016
                April 11 2016
                September 2016
                : 19
                : 3
                : 177-184
                Article
                10.1007/s12283-016-0203-0
                50356605-0d39-4936-bdb7-7c4b7a672c68
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article