4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Occurrence, Distribution and Ecological Risk of Bisphenol Analogues in the Surface Water from a Water Diversion Project in Nanjing, China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to the widespread use of bisphenol analogues (BPs) as alternatives to bisphenol A (BPA), considerable attention for health risk has been shown in aquatic ecosystems. The occurrence and distribution of six BPs were researched in a soluble phase (<10 −3 μm), colloidal phase (10 −3 μm to 1 µm), and suspended particulate matter (SPM >1 µm) in a water diversion project of Nanjing, China. Except for bisphenol Z, all BPs were detected in two or three phases, where the total concentrations of detected BPs were 161–613 ng/L, 5.19–77.2 ng/L, and 47.5–353 ng/g for the soluble phase, colloidal phase, and SPM, respectively. Among the detected compounds, BPA is still the dominant BPs in the soluble and colloidal phases, which is followed by bisphenol-S , while bisphenol-AF was the major contaminant in SPM, followed by BPA. The mean contribution proportions of colloids were 1–2 orders of magnitude higher than SPM, which suggests that colloids have a clear impact on regulating BPs’ environmental behaviors. In terms of spatial distribution, the water diversion project could reduce the pollution levels of BPs, which might further affect the ecological security of the Yangtze River.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Acute Toxicity, Teratogenic, and Estrogenic Effects of Bisphenol A and Its Alternative Replacements Bisphenol S, Bisphenol F, and Bisphenol AF in Zebrafish Embryo-Larvae

          Bisphenol A (BPA), a chemical incorporated into plastics and resins, has estrogenic activity and is associated with adverse health effects in humans and wildlife. Similarly structured BPA analogues are widely used but far less is known about their potential toxicity or estrogenic activity in vivo. We undertook the first comprehensive analysis on the toxicity and teratogenic effects of the bisphenols BPA, BPS, BPF, and BPAF in zebrafish embryo-larvae and an assessment on their estrogenic mechanisms in an estrogen-responsive transgenic fish Tg(ERE:Gal4ff)(UAS:GFP). The rank order for toxicity was BPAF > BPA > BPF > BPS. Developmental deformities for larval exposures included cardiac edema, spinal malformation, and craniofacial deformities and there were distinct differences in the effects and potencies between the different bisphenol chemicals. These effects, however, occurred only at concentrations between 1.0 and 200 mg/L which exceed those in most environments. All bisphenol compounds induced estrogenic responses in Tg(ERE:Gal4ff)(UAS:GFP) zebrafish that were inhibited by coexposure with ICI 182 780, demonstrating an estrogen receptor dependent mechanism. Target tissues included the heart, liver, somite muscle, fins, and corpuscles of Stannius. The rank order for estrogenicity was BPAF > BPA = BPF > BPS. Bioconcentration factors were 4.5, 17.8, 5.3, and 0.067 for exposure concentrations of 1.0, 1.0, 0.10, and 50 mg/L for BPA, BPF, BPAF, and BPS, respectively. We thus show that these BPA alternatives induce similar toxic and estrogenic effects to BPA and that BPAF is more potent than BPA, further highlighting health concerns regarding the use of BPA alternatives.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants.

            The occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds (LPhACs), such as antibiotics (roxithromycin, erythromycin and ketoconazole), anti-inflammatories (ibuprofen and diclofenac), β-blockers (propranolol), antiepileptics (carbamazepine) and steroid hormones (17α-ethinylestradiol), were investigated in the downstream rivers of sewage treatment plants in Nanjing, China. The results indicate that these LPhACs were widely detected in the surface water and fish samples, with the mean concentrations of the total LPhACs (ΣLPhACs) being in the range of 15.4 and 384.5 ng/L and 3.0 and 128.4 ng/g (wet weight), respectively. The bioaccumulation of the ΣLPhACs in wild fish tissues was generally in the order the liver>brain>gill>muscle. Among the target LPhACs, however, an interspecies difference in tissue distribution was evident for erythromycin. The bioaccumulation factors of LPhACs in the liver and brain, the two major targeted storage sites for toxicants, exhibited an obvious negative correlation with the aquatic concentrations (P daphnids>fish. However, the results indicate that diclofenac, ibuprofen and 17α-ethinylestradiol each posed chronic risks for high trophic level organisms (fish). In all of the risk assessments, erythromycin was found to be the most harmful for the most sensitive algae group. In this work, however, the total BAF and toxicological interactions of pharmaceuticals were not performed due to the lack of metabolite information and combined toxicity data, which represents a major hindrance to the effective risk assessment of pharmaceuticals.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Flame-Retardant Electrical Conductive Nanopolymers Based on Bisphenol F Epoxy Resin Reinforced with Nano Polyanilines

                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                07 September 2019
                September 2019
                : 16
                : 18
                : 3296
                Affiliations
                [1 ]Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing 210098, China (C.Z.) (R.X.) (W.C.)
                [2 ]Engineering Innovation Center of Land Ecological Monitoring and Remediation, Ministry of Natural Resources, Geological Survey of Jiangsu Province, Nanjing 210018, China (J.R.) (J.F.)
                [3 ]Everbright Environmental Protection Technology and Equipment (Changzhou) Co., Ltd., Changzhou 213011, China
                [4 ]Suzhou Litree Ultra-Filtration Membrane Technology Co., Ltd., Suzhou 215000, China
                Author notes
                [* ]Correspondence: jianchao-liu@ 123456hhu.edu.cn ; Tel.: +86-25-83787894
                Article
                ijerph-16-03296
                10.3390/ijerph16183296
                6765785
                31500322
                503e005d-3852-4583-82db-1ce81a2a3c1a
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 August 2019
                : 05 September 2019
                Categories
                Article

                Public health
                bisphenol analogues,colloids,suspended particulate matter,environmental risk,water diversion project

                Comments

                Comment on this article