23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The electrochemical conversion of carbon dioxide and water into useful products is a major challenge in facilitating a closed carbon cycle. Here we report a cobalt protoporphyrin immobilized on a pyrolytic graphite electrode that reduces carbon dioxide in an aqueous acidic solution at relatively low overpotential (0.5 V), with an efficiency and selectivity comparable to the best porphyrin-based electrocatalyst in the literature. While carbon monoxide is the main reduction product, we also observe methane as by-product. The results of our detailed pH-dependent studies are explained consistently by a mechanism in which carbon dioxide is activated by the cobalt protoporphyrin through the stabilization of a radical intermediate, which acts as Brønsted base. The basic character of this intermediate explains how the carbon dioxide reduction circumvents a concerted proton–electron transfer mechanism, in contrast to hydrogen evolution. Our results and their mechanistic interpretations suggest strategies for designing improved catalysts.

          Abstract

          The conversion of carbon dioxide to useful products is a major challenge in energy research. Here, the authors report a cobalt protoporphyrin immobilized on graphite that is capable of the selective and efficient electrochemical reduction of carbon dioxide, primarily to carbon monoxide, in acidic media.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption.

          The development of hydrogen-based energy sources as viable alternatives to fossil-fuel technologies has revolutionized clean energy production using fuel cells. However, to date, the slow rate of the hydrogen oxidation reaction (HOR) in alkaline environments has hindered advances in alkaline fuel cell systems. Here, we address this by studying the trends in the activity of the HOR in alkaline environments. We demonstrate that it can be enhanced more than fivefold compared to state-of-the-art platinum catalysts. The maximum activity is found for materials (Ir and Pt₀.₁Ru₀.₉) with an optimal balance between the active sites that are required for the adsorption/dissociation of H₂ and for the adsorption of hydroxyl species (OHad). We propose that the more oxophilic sites on Ir (defects) and PtRu material (Ru atoms) electrodes facilitate the adsorption of OHad species. Those then react with the hydrogen intermediates (Had) that are adsorbed on more noble surface sites.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Molecular catalysis of electrochemical reactions. Mechanistic aspects.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons.

              The catalytic activity and hydrocarbon selectivity in electrochemical carbon dioxide (CO2) reduction on cuprous oxide (Cu2O) derived copper nanoparticles is discussed. Cuprous oxide films with [100], [110] and [111] orientation and variable thickness were electrodeposited by reduction of copper(ii) lactate on commercially available copper plates. After initiation of the electrochemical CO2 reduction by these oxide structures, the selectivity of the process was found to largely depend on the parent Cu2O film thickness, rather than on the initial crystal orientation. Starting with thin Cu2O films, besides CO and hydrogen, selective formation of ethylene is observed with very high ethylene-to-methane ratios (∼8 to 12). In addition to these products, thicker Cu2O films yield a remarkably large amount of ethane. Long term Faradaic efficiency analysis of hydrocarbons shows no sign of deactivation of the electrodes after 5 hours of continuous experiment. Online mass spectroscopy studies combined with X-ray diffraction data suggest the reduction of the Cu2O films in the presence of CO2, generating a nanoparticulate Cu morphology, prior to the production of hydrogen, CO, and hydrocarbons. Optimizing coverage, number density and size of the copper nanoparticles, as well as local surface pH, may allow highly selective formation of the industrially important product ethylene.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                01 September 2015
                2015
                : 6
                : 8177
                Affiliations
                [1 ]Leiden Institute of Chemistry, Leiden University , PO Box 9502, 2300 RA Leiden, The Netherlands
                [2 ]PhotoCatalytic Synthesis Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente , Meander 229, PO Box 217, 7500 AE Enschede, The Netherlands
                Author notes
                Article
                ncomms9177
                10.1038/ncomms9177
                4569799
                26324108
                503fd123-9acf-47f1-b40c-059acb90fba3
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 20 March 2015
                : 27 July 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article