128
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Clinical Illness and Outcomes in Patients with Ebola in Sierra Leone

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,  
      New England Journal of Medicine
      Massachusetts Medical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Limited clinical and laboratory data are available on patients with Ebola virus disease (EVD). The Kenema Government Hospital in Sierra Leone, which had an existing infrastructure for research regarding viral hemorrhagic fever, has received and cared for patients with EVD since the beginning of the outbreak in Sierra Leone in May 2014. We reviewed available epidemiologic, clinical, and laboratory records of patients in whom EVD was diagnosed between May 25 and June 18, 2014. We used quantitative reverse-transcriptase-polymerase-chain-reaction assays to assess the load of Ebola virus (EBOV, Zaire species) in a subgroup of patients. Of 106 patients in whom EVD was diagnosed, 87 had a known outcome, and 44 had detailed clinical information available. The incubation period was estimated to be 6 to 12 days, and the case fatality rate was 74%. Common findings at presentation included fever (in 89% of the patients), headache (in 80%), weakness (in 66%), dizziness (in 60%), diarrhea (in 51%), abdominal pain (in 40%), and vomiting (in 34%). Clinical and laboratory factors at presentation that were associated with a fatal outcome included fever, weakness, dizziness, diarrhea, and elevated levels of blood urea nitrogen, aspartate aminotransferase, and creatinine. Exploratory analyses indicated that patients under the age of 21 years had a lower case fatality rate than those over the age of 45 years (57% vs. 94%, P=0.03), and patients presenting with fewer than 100,000 EBOV copies per milliliter had a lower case fatality rate than those with 10 million EBOV copies per milliliter or more (33% vs. 94%, P=0.003). Bleeding occurred in only 1 patient. The incubation period and case fatality rate among patients with EVD in Sierra Leone are similar to those observed elsewhere in the 2014 outbreak and in previous outbreaks. Although bleeding was an infrequent finding, diarrhea and other gastrointestinal manifestations were common. (Funded by the National Institutes of Health and others.).

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Outbreak of Ebola Virus Disease in Guinea: Where Ecology Meets Economy

          Ebola virus is back, this time in West Africa, with over 350 cases and a 69% case fatality ratio at the time of this writing [1]. The culprit is the Zaire ebolavirus species, the most lethal Ebola virus known, with case fatality ratios up to 90%. The epicenter and site of first introduction is the region of Guéckédou in Guinea's remote southeastern forest region, spilling over into various other regions of Guinea as well as to neighboring Liberia and Sierra Leone (Figure 1). News of this outbreak engenders three basic questions: (1) What in the world is Zaire ebolavirus doing in West Africa, far from its usual haunts in Central Africa? (2) Why Guinea, where no Ebola virus has ever been seen before? (3) Why now? We'll have to wait for the outbreak to conclude and more data analysis to occur to answer these questions in detail, and even then we may never know, but some educated speculation may be illustrative. 10.1371/journal.pntd.0003056.g001 Figure 1 Map of the three countries (Guinea, Liberia, and Sierra Leone) involved in the 2013–2014 outbreak of Ebola virus disease as of June 20, 2014. The putative first virus introduction and epicenter are in the vicinity of the town of Guéckédou in the Guinea Forest Region. CDC: http://www.cdc.gov/vhf/ebola/resources/distribution-map-guinea-outbreak.html. The Ebolavirus genus is comprised of five species, Zaire, Sudan, Taï Forest, Bundibugyo, and Reston, each associated with a consistent case fatality and more or less well-identified endemic area (Figure 2). Zaire ebolavirus had been previously found only in three Central African countries—the Democratic Republic of the Congo, Republic of the Congo, and Gabon. Thus, the logical assumption when Ebola virus turned up in Guinea was that this would be the Taï Forest species previously noted in Guinea's neighbor, Côte d'Ivoire. 10.1371/journal.pntd.0003056.g002 Figure 2 African countries where endemic transmission of Ebola virus has been noted. How did Zaire ebolavirus get all the way over to West Africa? The two possibilities appear to be that the virus has always been present the region, but we just never noticed, or that it was recently introduced. The initial report and phylogenetic analyses on the Guinea outbreak suggested that the Zaire ebolavirus found in Guinea is a distinct strain from that noted in Central Africa [1], thus suggesting that the virus may not be a newcomer to the region. However, subsequent reworking and interpretations of the limited genetic data have cast some doubt on this conclusion [2]. If Zaire ebolavirus had been circulating for some time in Guinea, one might expect greater sequence variation than the 97% homogeneity noted relative to that isolated from Central Africa [1]. Phylogenetic arguments aside, if Ebola virus was present in Guinea, wouldn't we have seen cases before? Not necessarily. Many pathogens may be maintained in animals with which humans normally have little contact, thus providing limited opportunity for infection. Furthermore, the proportion of infected animals may often be very low, so even frequent contact may not result in pathogen transmission. Even if human Ebola virus infection has occurred, it may not be recognized; contrary to popular concept, the clinical presentation of viral hemorrhagic fever is often very nonspecific, with frank bleeding seen in a minority of cases, so cases may be mistaken for other, more common diseases or, in the case of Guinea, Lassa fever, which is endemic in the area of the outbreak [3]. Nor are laboratory diagnostics routinely available in West Africa for most viral hemorrhagic fevers [4]. Ebola virus testing of human serum samples collected as far back as 1996 as part of surveillance for Lassa fever in the same region as the current outbreak could help reveal whether humans had exposure to Ebola virus prior to this outbreak [3]. We are presently organizing with collaborators to conduct ELISA antigen testing, PCR, and cell culture for Ebola virus on samples from persons who met the case definition for viral hemorrhagic fever but tested negative for Lassa fever. We will also test all samples for IgG antibody to Ebola virus to explore the prevalence of past exposure. Could Zaire ebolavirus have been recently introduced into Guinea from Central Africa? Introduction from a human traveler seems unlikely; there is little regular travel or trade between Central Africa and Guinea, and Guéckédou, the remote epicenter and presumed area of first introduction, is far off the beaten path, a minimum 12 hour drive over rough roads from the capitals of Guinea, Liberia, or Sierra Leone (Figure 1). Furthermore, with the average incubation period as well as time from disease onset until death in fatal cases both a little over a week, a human traveler would have to make the trip from Central Africa to Guéckédou rather rapidly. If Ebola virus was introduced into Guinea from afar, the more likely traveler was a bat. Although a virus has not yet been isolated, PCR and serologic evidence accumulated over the past decade suggests that fruit bats are the likely reservoir for Ebola virus. The hammer-headed fruit bat (Hypsignathus monstrosus), Franquet's epauletted fruit bat (Epomops franqueti), and the little collared fruit bat (Myonycteris torquata) are among the leading candidates [5]–[9]. Many of these species are common across sub-Saharan Africa, including in Guinea, and/or may migrate long distances, raising the possibility that one of these wayward flyers may have carried Ebola virus to Guinea [8]. Introduction into humans may have then occurred through exposures related to hunting and consumption of fruit bats, as has been suspected in Ebola virus outbreaks in Gabon [8]. Similar customs have been reported in Guinea, prompting the Guinean government to impose a ban on bat sale and consumption early on in the outbreak. Field collections and laboratory testing for Ebola viruses of bats collected from the Guinea forest region should shed light on the presence or absence of these various species in the area and possible Ebola virus infection. Indeed, a team of ecologists is already on the ground beginning this work. But why Guinea and why Guéckédou? Certainly this is not the only place bats migrate. Unfortunately, Ebola virus outbreaks typically constitute yet another health and economic burden to Africa's most disadvantaged populations. Despite the frequently promulgated image of Ebola virus mysteriously and randomly emerging from the forest, the sites of attack are far from random; large hemorrhagic fever virus outbreaks almost invariable occur in areas in which the economy and public health system have been decimated from years of civil conflict or failed development [10]–[13]. Biological and ecological factors may drive emergence of the virus from the forest, but clearly the sociopolitical landscape dictates where it goes from there—an isolated case or two or a large and sustained outbreak. The effect of a stalled economy and government is 3-fold. First, poverty drives people to expand their range of activities to stay alive, plunging deeper into the forest to expand the geographic as well as species range of hunted game and to find wood to make charcoal and deeper into mines to extract minerals, enhancing their risk of exposure to Ebola virus and other zoonotic pathogens in these remote corners. Then, the situation is compounded when the unlucky infected person presents to an impoverished and neglected healthcare facility where a supply of gloves, clean needles, and disinfectants is not a given, leaving patients and healthcare workers alike vulnerable to nosocomial transmission. The cycle is further amplified as persons infected in the hospital return to their homes incubating Ebola virus. This classic pattern was noted in Guinea, where early infection of a healthcare worker in Guéckédou triggered spread to surrounding prefectures and eventually to the capital, Conakry [1]. Lastly, with an outbreak now coming into full force, inefficient and poorly resourced governments struggle to respond, as we are seeing all too clearly with this outbreak of Ebola virus disease in West Africa, which is now by far the largest on record. The response challenge is compounded in this case by infected persons crossing the highly porous borders of the three implicated countries, requiring intergovernmental coordination, with all the inherent logistical challenges in remote areas with poor infrastructure and communication networks and, in this case, significant language barriers. Guinea, Liberia, and Sierra Leone, sadly, fit the bill for susceptibility to more severe outbreaks. While the devastating effects of the civil wars in Liberia and Sierra Leone are evident and well documented, readers may be less familiar with the history of Guinea, where decades of inefficient and corrupt government have left the country in a state of stalled or even retrograde development. Guinea is one of the poorest countries in the world, ranking 178 out of 187 countries on the United Nations Development Programme Human Development Index (just behind Liberia [174] and Sierra Leone [177]). More than half of Guineans live below the national poverty line and about 20% live in extreme poverty. The Guinea forest region, traditionally comprised of small and isolated populations of diverse ethnic groups who hold little power and pose little threat to the larger groups closer to the capital, has been habitually neglected, receiving little attention or capital investment. Rather, the region was systematically plundered and the forest decimated by clear-cut logging, leaving the “Guinea Forest Region” largely deforested (Figure 3). 10.1371/journal.pntd.0003056.g003 Figure 3 The area known as the Guinea Forest Region, now largely deforested because of logging and clearing and burning of the land for agriculture. Photo credit: Daniel Bausch. The forest region also shares borders with Sierra Leone, Liberia, and Cote d'Ivoire, three countries suffering civil war in recent decades. Consequently, the region has found itself home to tens of thousands of refugees fleeing these conflicts, adding to both the ecologic and economic burden. A United Nations High Commission for Refugees census of camps in the forest region in 2004 registered 59,000 refugees. Although the formal refugee camps have now been dismantled with improved political stability in the surrounding countries, the impact on the region is long lasting. Having worked in Guinea for a decade (1998–2008) on research projects based very close to the epicenter of the current Ebola virus outbreak, one of the authors (DGB) witnessed this “de-development” first-hand; on every trip back to Guinea, on every long drive from Conakry to the forest region, the infrastructure seemed to be further deteriorated—the once-paved road was worse, the public services less, the prices higher, the forest thinner (Figures 3 and 4). 10.1371/journal.pntd.0003056.g004 Figure 4 Scenes of the degraded infrastructure of the Guinea forest region. A. Once-paved, but now deteriorated road; B, C, and D. Street views of the dilapidated town of Guéckédou, the epicenter of the Ebola virus disease outbreak. Photos credit: Frederique Jacquerioz. Guinea fell further into governmental and civil disarray after former president Lansana Conté's death in 2008 left a power vacuum, with a series of coup d'états and periods of violence. Although the political situation has now somewhat stabilized, the country struggles to progress; socioeconomic indicators such as life expectancy (56 years) and growth national income (GNI) per capita ($440) have crept up in the past few years, but still remain disparagingly low. Despite a wealth of mineral and other natural resources, Guinea still possesses the eighth lowest GNI per capita in the world, and the incidence of poverty has been steadily increasing since 2003. Lastly, why is this outbreak of Ebola virus happening now? As best as can be determined, the first case of Ebola virus disease in Guinea occurred in December 2013, at the beginning of the dry season, a finding consistent with observations from other countries that outbreaks often begin during the transition from the rainy to dry seasons [14]–[18]. Sharply drier conditions at the end of the rainy seasons have been cited as one triggering event [17]. Although more in-depth analysis of the environmental conditions in Guinea over the period in question remain to be conducted, inhabitants in the region do indeed anecdotally report an exceptionally arid and prolonged dry season, perhaps linked to the extreme deforestation of the area over recent decades. At present, we can only speculate that these drier ecologic conditions somehow influence the number or proportion of Ebola virus–infected bats and/or the frequency of human contact with them. The precise factors that result in an Ebola virus outbreak remain unknown, but a broad examination of the complex and interwoven ecology and socioeconomics may help us better understand what has already happened and be on the lookout for what might happen next, including determining regions and populations at risk. Although the focus is often on the rapidity and efficacy of the short-term international response, attention to these admittedly challenging underlying factors will be required for long-term prevention and control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms underlying coagulation abnormalities in ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event.

            Disseminated intravascular coagulation is a prominent manifestation of Ebola virus (EBOV) infection. Here, we report that tissue factor (TF) plays an important role in triggering the hemorrhagic complications that characterize EBOV infections. Analysis of samples obtained from 25 macaques showed increased levels of TF associated with lymphoid macrophages, whereas analysis of peripheral blood-cell RNA showed increased levels of TF transcripts by day 3. Plasma from macaques contained increased numbers of TF-expressing membrane microparticles. Dysregulation of the fibrinolytic system developed during the course of infection, including a rapid decrease in plasma levels of protein C. Infection of primary human monocytes/macrophages (PHMs) was used to further evaluate the role of TF in EBOV infections. Analysis of PHM RNA at 1-48 h showed increased TF transcripts, whereas levels of TF protein were dramatically increased by day 2. Thus, chemotherapeutic strategies aimed at controlling overexpression of TF may ameliorate the effects of EBOV hemorrhagic fever.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blood chemistry measurements and D-Dimer levels associated with fatal and nonfatal outcomes in humans infected with Sudan Ebola virus.

              Blood samples from patients infected with the Sudan species of Ebola virus (EBOV), obtained during an outbreak of disease in Uganda in 2000, were tested for a panel of analytes to evaluate their clinical condition and to compare values obtained for patients with fatal and nonfatal cases and for uninfected (hospitalized control) patients. Liver function tests showed higher levels of aspartate aminotransferase (AST) in blood samples from patients with fatal cases than in samples from patients with nonfatal cases, whereas alanine aminotransferase levels were comparable and only slightly increased in all patients, suggesting that increased blood AST levels are due to a greater degree of injury in tissues other than the liver. Significantly higher levels of amylase, urea nitrogen, and creatinine suggest that acute pancreatitis and renal dysfunction develop in fatal cases, whereas reduced albumin and calcium levels may be linked to these conditions or to liver damage. d-Dimer levels in blood specimens were drastically increased in patients with fatal and nonfatal infections but were 4 times higher in patients with fatal cases than in patients who survived (180,000 vs. 44,000 ng/mL), during the most acute period of the infection (6-8 days after onset). These results indicate that disseminated intravascular coagulation is an early and important component of EBOV disease. This study has identified levels of analytes with prognostic value, which can also be used to target therapeutic interventions, and expands on the findings of prior blood tests conducted on this group of patients.
                Bookmark

                Author and article information

                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                November 27 2014
                November 27 2014
                : 371
                : 22
                : 2092-2100
                Article
                10.1056/NEJMoa1411680
                4318555
                25353969
                507eaa95-f866-496d-a1d4-7d116cffdba5
                © 2014
                History

                Comments

                Comment on this article