12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Enhanced Microwave Absorption Performance from Magnetic Coupling of Magnetic Nanoparticles Suspended within Hierarchically Tubular Composite

      1 , 1 , 1 , 1 , 1 , 1
      Advanced Functional Materials
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Carbon nanotubes: present and future commercial applications.

          Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CoNi@SiO2 @TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption.

            The synthesis of CoNi@SiO2 @TiO2 core-shell and CoNi@Air@TiO2 yolk-shell microspheres is reported for the first time. Owing to the magnetic-dielectric synergistic effect, the obtained CoNi@SiO2 @TiO2 microspheres exhibit outstanding microwave absorption performance with a maximum reflection loss of -58.2 dB and wide bandwidth of 8.1 GHz (8.0-16.1 GHz, < -10 dB).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam.

              The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated. Simply via physical compression, the microwave absorption performance can be tuned. The qualified bandwidth coverage of 93.8% (60.5 GHz/64.5 GHz) is achieved for the GF under 90% compressive strain (1.0 mm thickness). This mainly because of the 3D conductive network.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616-301X
                1616-3028
                May 08 2019
                July 2019
                May 06 2019
                July 2019
                : 29
                : 28
                : 1901448
                Affiliations
                [1 ]Laboratory of Advanced MaterialsDepartment of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem)Fudan University Shanghai 200438 P. R. China
                Article
                10.1002/adfm.201901448
                50c41595-27ae-4116-a8b5-5898978a3135
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article