41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synchronous Chaos and Broad Band Gamma Rhythm in a Minimal Multi-Layer Model of Primary Visual Cortex

      research-article
      1 , 2 , * , 3 , 4
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Visually induced neuronal activity in V1 displays a marked gamma-band component which is modulated by stimulus properties. It has been argued that synchronized oscillations contribute to these gamma-band activity. However, analysis of Local Field Potentials (LFPs) across different experiments reveals considerable diversity in the degree of oscillatory behavior of this induced activity. Contrast-dependent power enhancements can indeed occur over a broad band in the gamma frequency range and spectral peaks may not arise at all. Furthermore, even when oscillations are observed, they undergo temporal decorrelation over very few cycles. This is not easily accounted for in previous network modeling of gamma oscillations. We argue here that interactions between cortical layers can be responsible for this fast decorrelation. We study a model of a V1 hypercolumn, embedding a simplified description of the multi-layered structure of the cortex. When the stimulus contrast is low, the induced activity is only weakly synchronous and the network resonates transiently without developing collective oscillations. When the contrast is high, on the other hand, the induced activity undergoes synchronous oscillations with an irregular spatiotemporal structure expressing a synchronous chaotic state. As a consequence the population activity undergoes fast temporal decorrelation, with concomitant rapid damping of the oscillations in LFPs autocorrelograms and peak broadening in LFPs power spectra. We show that the strength of the inter-layer coupling crucially affects this spatiotemporal structure. We predict that layer VI inactivation should induce global changes in the spectral properties of induced LFPs, reflecting their slower temporal decorrelation in the absence of inter-layer feedback. Finally, we argue that the mechanism underlying the emergence of synchronous chaos in our model is in fact very general. It stems from the fact that gamma oscillations induced by local delayed inhibition tend to develop chaos when coupled by sufficiently strong excitation.

          Author Summary

          Visual stimulation elicits neuronal responses in visual cortex. When the contrast of the used stimuli increases, the power of this induced activity is boosted over a broad frequency range (30–100 Hz), called the “gamma band.” It would be tempting to hypothesize that this phenomenon is due to the emergence of oscillations in which many neurons fire collectively in a rhythmic way. However, previous models trying to explain contrast-related power enhancements using synchronous oscillations failed to reproduce the observed spectra because they originated unrealistically sharp spectral peaks. The aim of our study is to reconcile synchronous oscillations with broad-band power spectra. We argue here that, thanks to the interaction between neuronal populations at different depths in the cortical tissue, the induced oscillatory responses are synchronous, but, at the same time, chaotic. The chaotic nature of the dynamics makes it possible to have broad-band power spectra together with synchrony. Our modeling study allows us formulating qualitative experimental predictions that provide a potential test for our theory. We predict that if the interactions between cortical layers are suppressed, for instance by inactivating neurons in deep layers, the induced responses might become more regular and narrow isolated peaks might develop in their power spectra.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.

          Gamma frequency oscillations are thought to provide a temporal structure for information processing in the brain. They contribute to cognitive functions, such as memory formation and sensory processing, and are disturbed in some psychiatric disorders. Fast-spiking, parvalbumin-expressing, soma-inhibiting interneurons have a key role in the generation of these oscillations. Experimental analysis in the hippocampus and the neocortex reveals that synapses among these interneurons are highly specialized. Computational analysis further suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering.

            This study introduces a new method for detecting and sorting spikes from multiunit recordings. The method combines the wavelet transform, which localizes distinctive spike features, with superparamagnetic clustering, which allows automatic classification of the data without assumptions such as low variance or gaussian distributions. Moreover, an improved method for setting amplitude thresholds for spike detection is proposed. We describe several criteria for implementation that render the algorithm unsupervised and fast. The algorithm is compared to other conventional methods using several simulated data sets whose characteristics closely resemble those of in vivo recordings. For these data sets, we found that the proposed algorithm outperformed conventional methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Large-scale recording of neuronal ensembles.

              How does the brain orchestrate perceptions, thoughts and actions from the spiking activity of its neurons? Early single-neuron recording research treated spike pattern variability as noise that needed to be averaged out to reveal the brain's representation of invariant input. Another view is that variability of spikes is centrally coordinated and that this brain-generated ensemble pattern in cortical structures is itself a potential source of cognition. Large-scale recordings from neuronal ensembles now offer the opportunity to test these competing theoretical frameworks. Currently, wire and micro-machined silicon electrode arrays can record from large numbers of neurons and monitor local neural circuits at work. Achieving the full potential of massively parallel neuronal recordings, however, will require further development of the neuron-electrode interface, automated and efficient spike-sorting algorithms for effective isolation and identification of single neurons, and new mathematical insights for the analysis of network properties.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                October 2011
                October 2011
                6 October 2011
                : 7
                : 10
                : e1002176
                Affiliations
                [1 ]Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
                [2 ]Bernstein Center for Computational Neuroscience, Göttingen, Germany
                [3 ]Université Paris Descartes, Laboratoire de Neurophysique et Physiologie, CNRS UMR 8119, Paris, France
                [4 ]Interdisciplinary Center for Neural Computation, The Hebrew University, Jerusalem, Israel
                Indiana University, United States of America
                Author notes

                Conceived and designed the experiments: DB DH. Performed the experiments: DB. Analyzed the data: DB DH. Wrote the paper: DB DH. Conceived and designed the model: DB DH. Performed and analyzed simulations: DB.

                Article
                PCOMPBIOL-D-10-00341
                10.1371/journal.pcbi.1002176
                3188510
                21998568
                50e1e8af-e8f0-49d8-81f5-1db2fc261b28
                Battaglia and Hansel. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 December 2010
                : 15 July 2011
                Page count
                Pages: 24
                Categories
                Research Article
                Biology
                Neuroscience
                Computational Neuroscience
                Circuit Models
                Sensory Systems
                Sensory Systems
                Visual System
                Neural Networks

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article