Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Enzyme-assisted extraction of fucoxanthin and lipids containing polyunsaturated fatty acids from Undaria pinnatifida using dimethyl ether and ethanol

      , , , ,
      Process Biochemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues.

          Mitochondrial uncoupling protein 1 (UCP1) is usually expressed only in brown adipose tissue (BAT) and a key molecule for metabolic thermogenesis to avoid an excess of fat accumulation. However, there is little BAT in adult humans. Therefore, UCP1 expression in tissues other than BAT is expected to reduce abdominal fat. Here, we show reduction of abdominal white adipose tissue (WAT) weights in rats and mice by feeding lipids from edible seaweed, Undaria pinnatifida. Clear signals of UCP1 protein and mRNA were detected in WAT of mice fed the Undaria lipids, although there is little expression of UCP1 in WAT of mice fed control diet. The Undaria lipids mainly consisted of glycolipids and seaweed carotenoid, fucoxanthin. In the fucoxanthin-fed mice, WAT weight significantly decreased and UCP1 was clearly expressed in the WAT, while there was no difference in WAT weight and little expression of UCP1 in the glycolipids-fed mice. This result indicates that fucoxanthin upregulates the expression of UCP1 in WAT, which may contribute to reducing WAT weight.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum.

            Fucoxanthin, one of the main marine carotenoids, is abundant in macro- and microalgae. Here, fucoxanthin was isolated and structurally identified as the major carotenoid in the diatom Phaeodactylum tricornutum through chromatographic and spectroscopic methods, such as liquid chromatography-positive-ion atmospheric pressure chemical ionization/mass spectroscopy and nuclear magnetic resonance. This pigment was quantified by reverse-phase high-performance liquid chromatography, and a number of extraction procedures were assessed to investigate the effect of solvent type, extraction time, temperature, and extraction method (maceration, ultrasound-assisted extraction, Soxhlet extraction, and pressurized liquid extraction). Among the investigated solvents, ethanol provided the best fucoxanthin extraction yield (15.71 mg/g freeze-dried sample weight). Fucoxanthin content in the extracts produced by the different methods was quite constant (15.42-16.51 mg/g freeze-dried sample weight) but increased steeply based on the percentage of ethanol in water, emphasizing the importance of ethanol in the extraction. The results indicate that P. tricornutum is a rich source of fucoxanthin (at least ten times more abundant than that in macroalgae) that is easily extracted with ethanol, suggesting potential applications in human and animal food, health, and cosmetics.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Fatty acids, total lipid, protein and ash contents of processed edible seaweeds

                Bookmark

                Author and article information

                Journal
                Process Biochemistry
                Process Biochemistry
                Elsevier BV
                13595113
                December 2013
                December 2013
                : 48
                : 12
                : 1999-2008
                Article
                10.1016/j.procbio.2013.09.015
                510be1ce-2281-43ab-85ee-e6577f6d2003
                © 2013
                History

                Comments

                Comment on this article