2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Attenuated, Oncolytic, but Not Wild-Type Measles Virus Infection Has Pleiotropic Effects on Human Neutrophil Function

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We previously showed that neutrophils play a role in regression of human tumor xenografts in immunodeficient mice following oncolytic vaccine measles virus (MV-Vac) treatment. In this study, we sought, using normal human neutrophils, to identify potential neutrophil-mediated mechanisms for the attenuated MV-Vac induced effects seen in vivo, by comparison with those consequent on wild-type (WT-MV) infection. Both MV-Vac and WT-MV infected and replicated within neutrophils, despite lack of SLAM expression. In both cases, neutrophils survived longer ex vivo postinfection. Furthermore, MV-Vac (but not WT-MV) infection activated neutrophils and stimulated secretion of several specific antitumor cytokines (IL-8, TNF-α, MCP-1, and IFN-α) via induction of de novo RNA and protein synthesis. In addition, MV-Vac (but not WT-MV) infection caused TRAIL secretion in the absence of de novo synthesis by triggering release of prefabricated TRAIL, via a direct effect upon degranulation. The differences between the outcome of infection by MV-Vac and WT-MV were not entirely explained by differential infection and replication of the viruses within neutrophils. To our knowledge, this is the first demonstration of potential mechanisms of oncolytic activity of an attenuated MV as compared with its WT parent. Furthermore, our study suggests that neutrophils have an important role to play in the antitumor effects of oncolytic MV.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          A new mathematical model for relative quantification in real-time RT-PCR.

          M. Pfaffl (2001)
          Use of the real-time polymerase chain reaction (PCR) to amplify cDNA products reverse transcribed from mRNA is on the way to becoming a routine tool in molecular biology to study low abundance gene expression. Real-time PCR is easy to perform, provides the necessary accuracy and produces reliable as well as rapid quantification results. But accurate quantification of nucleic acids requires a reproducible methodology and an adequate mathematical model for data analysis. This study enters into the particular topics of the relative quantification in real-time RT-PCR of a target gene transcript in comparison to a reference gene transcript. Therefore, a new mathematical model is presented. The relative expression ratio is calculated only from the real-time PCR efficiencies and the crossing point deviation of an unknown sample versus a control. This model needs no calibration curve. Control levels were included in the model to standardise each reaction run with respect to RNA integrity, sample loading and inter-PCR variations. High accuracy and reproducibility (<2.5% variation) were reached in LightCycler PCR using the established mathematical model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neutrophil granules: a library of innate immunity proteins.

            Gene expression profiling has revealed that circulating neutrophils rest between two major bursts of transcriptional and protein synthetic activities. The first occurs in the bone marrow. This equips the neutrophil with stocks of innate defense armory that are packaged into different granule subsets. The second burst occurs when the neutrophil exits circulation and migrates into tissues to find, capture and phagocytose microorganisms. This burst results in the synthesis and secretion of cytokines and chemokines that support resolution of inflammation and healing of damaged tissue. Gene expression profiling has revealed that neutrophils express a variety of innate immunity proteins, known previously only to be expressed in other cells. Likewise, it has become clear that some proteins previously thought to be specific to the neutrophil are expressed in epithelial cells during inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adherens junction protein nectin-4 (PVRL4) is the epithelial receptor for measles virus

              Measles (MV) is an aerosol-transmitted virus that affects more than 10 million children each year and accounts for approximately 120,000 deaths 1,2 . While it was long believed to replicate in the respiratory epithelium before disseminating, it was recently shown to initially infect macrophages and dendritic cells of the airways using the signaling lymphocytic activation molecule (SLAM, CD150) as receptor 3-6 . These cells then cross the respiratory epithelium and ferry the infection to lymphatic organs where MV replicates vigorously 7 . How and where the virus crosses back into the airways has remained unknown. Based on functional analyses of surface proteins preferentially expressed on virus-permissive epithelial cell lines, we identified nectin-4 8 (poliovirus-receptor-like-4) as a candidate host exit receptor. This adherens junction protein of the immunoglobulin superfamily interacts with the viral attachment protein with high affinity through its membrane-distal domain. Nectin-4 sustains MV entry and non-cytopathic lateral spread in well-differentiated primary human airway epithelial sheets infected basolaterally. It is down-regulated in infected epithelial cells, including those of macaque tracheas. While other viruses use receptors to enter hosts or transit through their epithelial barriers, we suggest that MV targets nectin-4 to emerge in the airways. Nectin-4 is a cellular marker of several types of cancer 9-11 , which has implications for ongoing MV-based clinical trials of oncolysis 12 .
                Bookmark

                Author and article information

                Journal
                The Journal of Immunology
                The American Association of Immunologists
                0022-1767
                1550-6606
                February 01 2012
                February 01 2012
                February 01 2012
                February 01 2012
                : 188
                : 3
                : 1002-1010
                Article
                10.4049/jimmunol.1102262
                22180616
                51203a4e-4ee3-4926-9677-45e21ccd1792
                © 2012
                History

                Comments

                Comment on this article