6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tracking Progress Toward the 2010 Biodiversity Target and Beyond

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data.

          Forest cover is an important input variable for assessing changes to carbon stocks, climate and hydrological systems, biodiversity richness, and other sustainability science disciplines. Despite incremental improvements in our ability to quantify rates of forest clearing, there is still no definitive understanding on global trends. Without timely and accurate forest monitoring methods, policy responses will be uninformed concerning the most basic facts of forest cover change. Results of a feasible and cost-effective monitoring strategy are presented that enable timely, precise, and internally consistent estimates of forest clearing within the humid tropics. A probability-based sampling approach that synergistically employs low and high spatial resolution satellite datasets was used to quantify humid tropical forest clearing from 2000 to 2005. Forest clearing is estimated to be 1.39% (SE 0.084%) of the total biome area. This translates to an estimated forest area cleared of 27.2 million hectares (SE 2.28 million hectares), and represents a 2.36% reduction in area of humid tropical forest. Fifty-five percent of total biome clearing occurs within only 6% of the biome area, emphasizing the presence of forest clearing "hotspots." Forest loss in Brazil accounts for 47.8% of total biome clearing, nearly four times that of the next highest country, Indonesia, which accounts for 12.8%. Over three-fifths of clearing occurs in Latin America and over one-third in Asia. Africa contributes 5.4% to the estimated loss of humid tropical forest cover, reflecting the absence of current agro-industrial scale clearing in humid tropical Africa.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Monitoring change in vertebrate abundance: the living planet index.

            The task of measuring the decline of global biodiversity and instituting changes to halt and reverse this downturn has been taken up in response to the Convention on Biological Diversity's 2010 target. It is an undertaking made more difficult by the complex nature of biodiversity and the consequent difficulty in accurately gauging its depletion. In the Living Planet Index, aggregated population trends among vertebrate species indicate the rate of change in the status of biodiversity, and this index can be used to address the question of whether or not the 2010 target has been achieved. We investigated the use of generalized additive models in aggregating large quantities of population trend data, evaluated potential bias that results from collation of existing trends, and explored the feasibility of disaggregating the data (e.g., geographically, taxonomically, regionally, and by thematic area). Our results show strengths in length and completeness of data, little evidence of bias toward threatened species, and the possibility of disaggregation into meaningful subsets. Limitations of the data set are still apparent, in particular the dominance of bird data and gaps in tropical-species population coverage. Population-trend data complement the longer-term, but more coarse-grained, perspectives gained by evaluating species-level extinction rates. To measure progress toward the 2010 target, indicators must be adapted and strategically supplemented with existing data to generate meaningful indicators in time. Beyond 2010, it is critical a strategy be set out for the future development of indicators that will deal with existing data gaps and that is intricately tied to the goals of future biodiversity targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Living Planet Index: using species population time series to track trends in biodiversity.

              The Living Planet Index was developed to measure the changing state of the world's biodiversity over time. It uses time-series data to calculate average rates of change in a large number of populations of terrestrial, freshwater and marine vertebrate species. The dataset contains about 3000 population time series for over 1100 species. Two methods of calculating the index are outlined: the chain method and a method based on linear modelling of log-transformed data. The dataset is analysed to compare the relative representation of biogeographic realms, ecoregional biomes, threat status and taxonomic groups among species contributing to the index. The two methods show very similar results: terrestrial species declined on average by 25% from 1970 to 2000. Birds and mammals are over-represented in comparison with other vertebrate classes, and temperate species are over-represented compared with tropical species, but there is little difference in representation between threatened and non-threatened species. Some of the problems arising from over-representation are reduced by the way in which the index is calculated. It may be possible to reduce this further by post-stratification and weighting, but new information would first need to be collected for data-poor classes, realms and biomes.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                September 17 2009
                September 18 2009
                September 17 2009
                September 18 2009
                : 325
                : 5947
                : 1503-1504
                Article
                10.1126/science.1175466
                19762630
                51691dc5-d609-4219-acfe-cec0758bccdb
                © 2009
                History

                Comments

                Comment on this article