27
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human African Trypanosomiasis Research Gets a Boost: Unraveling the Tsetse Genome

      editorial

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human African trypanosomiasis (HAT), also known as sleeping sickness, is a neglected disease that impacts 70 million people distributed over 1.55 million km2 in sub-Saharan Africa [1]. Trypanosoma brucei gambiense accounts for almost 90% of the infections in central and western Africa, the remaining infections being from T. b. rhodesiense in eastern Africa [1]. Furthermore, the animal diseases caused by related parasites inflict major economic losses to countries already strained [2]. The parasites are transmitted to the mammalian hosts through the bite of an infected tsetse fly. In the early part of the 20th century, HAT epidemics decimated human populations in many parts of Africa. In the 1930s, systematic screening, treatment, and follow-up of millions of individuals by the colonial administrations led to a dramatic decrease in disease transmission (reviewed in [3]). Following independence in the 1950–60s, HAT control efforts in most African countries were relaxed and taken over by other priorities in light of the decline in disease incidence. Unfortunately, the disease slowly returned, with flare-ups beginning to be reported throughout the endemic areas by the late 80s and early 90s [4], [5], [6]. In a 1997 resolution, WHO strongly advocated access to diagnosis and treatment with surveillance and control activities, concurrently setting up a network to strengthen coordination among endemic countries [7], [8]. Sadly, the disease killed thousands of people before control measures began to take effect [9]. In 2006, 20 out of the 36 endemic countries had achieved the target of no new cases, and eight countries reported fewer than 100 cases. In 2008, WHO declared that the newly reported cases had dramatically declined to fewer than 10,000 continent-wide and called for plans towards a HAT elimination policy [10]. The gambiense form of the disease has been targeted for elimination by 2020 [11]. It is important to note, however, that estimating the true burden of HAT is difficult, as the disease affects the most neglected populations, living in remote and rural settings where the majority of people affected are beyond the reach of health care systems and are not reported in the health metrics [12]. It is also important to be mindful of ongoing political conflicts, which stand to refuel the emergence of epidemics unless control measures continue to be employed in endemic countries [13], [14], [15]. Thus, it is imperative that endemic countries must at least continue to retain mechanisms and health personnel who can recognize and report potential HAT cases to prevent reemergence of the disease [16]. A flexible set of control efforts needs to be adapted to the different epidemiological patterns in order to adopt the most adequate strategies for maintaining cost-effectiveness [17], [18]. Achieving disease control in the mammalian host has been challenging given the lack of effective mammalian vaccines and cheap and easily deliverable drugs. Furthermore, at times of low endemicity, relying on active surveillance of human infections is not cost-effective. The challenge now is to identify control methods that will ensure that the continent remains free of HAT. One approach that has worked well to curb disease is the reduction of tsetse vector populations. This is due to the low reproductive rate of tsetse resulting from its viviparous biology. Improving the efficacy of the currently available vector control tools (targets, traps, and insecticide applications) or enhancing the implementation of control programs that utilize this set of tools in different ecological settings can improve effectiveness. Also, the effectiveness of these tools can be improved through a better understanding of tsetse physiology—a feature that has enabled the development of these tools in the first place. The complete genome sequence information from Glossina morsitans morsitans, published in Science this week, now provides a unique opportunity to transform tsetse research and disease control practices [19]. Particularly important in this regard is knowledge of tsetse's vision, olfactory, immune, digestive and reproductive physiology. The eight research papers published this week PLOS-wide that accompany the tsetse genome paper already point to unique opportunities for improving control (see Tsetse Genome Biology Collection). Getting at the genome data, however, has not been an easy road. The Glossina community was small, and many of the facilities in Africa that maintained tsetse fly colonies and conducted research on this vector were beginning to downsize their programs in the early 2000s due to reduced research funds, despite the rising disease incidence. A small group of researchers, however, argued that moving tsetse research into the -omics era would provide new stimulus that would give rise to opportunities for control and, importantly, would attract young researchers to the field of tsetse research [20]. The Molecular Entomology work area of the Special Programme for Research and Training in Tropical Diseases (TDR) at the World Health Organization (WHO) funded the establishment of a consortium (International Glossina Genome Initiative [IGGI]) in 2004 that brought together an interdisciplinary group of researchers from multiple institutions to chart the course towards the finish line [20], [21]. The consortium recruited global funds that enabled the development of a molecular toolbox, which initially included data from several large expressed-sequence (EST) libraries along with construction and sequencing of a Bacterial Artificial Chromosome (BAC) library. Given that the tsetse vector and the disease is endemic to sub-Sahara Africa, IGGI membership chose to use this networking opportunity to help build research capacity in Africa on genetics and genomics aspects of tsetse [21]. In the following seven years, the IGGI consortium met yearly for coordination meetings, organized five bioinformatics workshops that trained students and junior faculty from endemic countries, and set up exchange programs for students and researchers from Africa to be trained in research laboratories in Europe and the United States. Over 40 African students and researchers from African institutions attended a transcriptome analysis jamboree held at the South African National Bioinformatics Institute (SANBI) in 2007. The genome project led by the Sanger Institute also benefited from the contributions of many genome centers, including TIGR in the US, RIKEN in Japan, and Genoscope in France. Two manual community annotation workshops and the 146 experts recruited from the broad vector community helped the program to reach the finish line this month. Building on their success story with Glossina morsitans genome, the consortium has now secured funds from the National Institute of Health in the US to sequence five additional species of Glossina at the University of Washington Genome Center, and this project is nearly complete. The PLOS-wide collection, titled Tsetse Genome Biology, accompanying this issue presents two Historical Perspective articles that review events related to the devastating HAT epidemics in the early years of the 20th century [22], [23]. In addition, the collection has eight research articles that expand on the genome discoveries and report on several low hanging fruits that are ready for exploitation for improved vector control. One of these discoveries is related to the tsetse olfactory system, which appears to be significantly streamlined when compared to other disease vectors, such as mosquitoes [24]. At the core of the success of the trapping devices is the ability of tsetse to recognize the color blue and be attracted to certain smells, which are used as bait. The availability of the full spectrum of olfactory components now stands to provide new or more effective species-specific attractants that can improve the efficacy of traps. Another area that is unique among disease vectors is tsetse's viviparous reproductive system, which involves the production of one progeny at a time that is nourished by the milk secretions of the mother during intrauterine development. Each female can produce on average eight to ten progeny, and she remains fecund during much of her adult life. This low reproductive capacity is at the core of the success of strategies that aim to reduce tsetse populations. To nurture its developing larva, the tsetse female lactates and produces milk. Researchers have now identified a previously unknown group of indispensable milk proteins that are coordinately synthesized during the lactation phase. Without these proteins, the female cannot support her developing larva [25]. Interestingly, a single transcription factor, the homeobox factor Ladybird Late, may be responsible for the coordinated expression of all milk proteins, opening the way for future novel biological strategies that target tsetse's lactation cycle and associated reproductive capacity [26]. In addition, lactation-specific aquaporin proteins were also identified and are needed for water transport and hydration during milk synthesis [27]. Finally, comparison of before and after pregnancy transcriptomes indicates that prevention of oxidative stress may be the key for the success of the prolonged reproductive output and longevity associated with tsetse female physiology [28]. Tsetse carries with it multiple symbiotic microbes, one of which is called Wolbachia. Wolbachia has been shown to manipulate host reproductive physiology in many insects, including in tsetse [29]. One of the research papers in the collection describes the Whole Genome Sequence of the Wolbachia symbiont obtained from the same Glossina morsitans species [30]. This study also reports that unusually large sections of the genome of the Wolbachia symbiont have been transferred to the host tsetse genome, particularly residing in the sex chromosomes [30]. Finally, although extensive research has been conducted on African trypanosomes in the mammalian host, knowledge of tsetse–parasite interactions remains sparse. An area of interest has been discovery of tsetse mechanisms that can block parasite transmission either in the midgut or in the salivary glands. This is of interest to both basic and applied research since the ability to engineer greater resistance in flies could solve the problem of disease transmission. Researchers characterized important tsetse genes whose products are components of physical and immunological barriers in the gut Peritrophic Matrix (PM) to trypanosome infections [31]. Another study has compared trypanosome and tsetse transcriptomes from normal and parasitized salivary glands, as well as from normal and parasitized mammalian blood [32]. This study reports on parasite adaptations that may enable its survival in the two different host environments and host gene expression modifications that may help parasite survival in either the salivary gland or, possibly, in the mammalian bite site [32]. The wealth of information that is revealed from the genome and functional genomics data is now ready to be explored and exploited. The soon-to-be-available additional Glossina genomes will shed light onto the species-specific habitat and vertebrate host requirements and varying vector competence associated with the different species. Thus, money was well spent on the small investment made by WHO-TDR to bring together IGGI. An important goal of the genome project was expansion of the community of tsetse researchers—the consortium now invites all interested researchers, particularly junior scientists, to take a look at research opportunities on tsetse and trypanosomes. The consortium hopes that while HAT is a neglected tropical disease, vector tsetse research may enjoy broader participation from the vector community and lead to improved and/or novel methods to eliminate disease.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Estimating and Mapping the Population at Risk of Sleeping Sickness

          Introduction Human African trypanosomiasis (HAT), or sleeping sickness, is a vector-borne disease caused by two sub-species of the parasitic protozoa Trypanosoma brucei (i.e. T. b. gambiense and T. b. rhodesiense). Trypanosomes are transmitted to humans by the infected bite of various species of tsetse fly (genus Glossina). Transmission of the disease only takes place in sub-Saharan Africa, in discrete areas of endemicity, or ‘foci’, within the geographic distribution of the tsetse fly. The Gambian form of sleeping sickness is normally characterized by a long asymptomatic period and it is found in western and central Africa. The Rhodesian form, which is encountered in eastern and southern Africa, displays a much more rapid onset of overt symptoms and a faster progression. In the early 1960s, the reported incidence of the disease was at a trough, with only a few thousand cases being reported annually. However, a decline in surveillance in the post-independence period allowed sleeping sickness to regain ground. By the end of the 20th century, the World Health Organization (WHO) estimated that 300,000 people contracted the infection every year [1]. Since then, a global alliance led by WHO set elimination as the goal of its strategy against HAT [2], [3]. This renewed commitment by international and national institutions, including the private sector, succeeded in reverting the trend. As compared to the peak in 1998, when 37,991 new cases of HAT had been reported at the continental level, 6,743 cases were reported in 2011, corresponding to a reduction of 82.3%. Also, many countries considered as endemic have not reported any cases in recent years [4]. The magnitude of the recent advances in HAT control and surveillance is such that up-to-date estimates of the number and geographic distribution of people at risk are urgently needed. In the past, estimates of sleeping sickness risk at the continental, regional and national levels could only be based on educated guess and rough estimations of experts, rather than on a clearly laid out, objective analysis of the epidemiological evidence. In 1985, a WHO Expert Committee indicated that a population of 78.5 million was at risk of HAT in sub-Saharan Africa [5]. This figure was based on national-level information provided by the Ministries of Health of affected countries. In 1995, a new WHO Expert Committee indicated that 60.8 million people were at risk of contracting sleeping sickness [1], thus providing what was, to date, the latest global estimate of HAT risk. To derive this latest figure, a semi-quantitative method was used, whereby rural populations involved in agricultural activities within known HAT transmission areas were considered at risk. In both estimates, subjectivity remained high and the link to the epidemiological evidence loose. Since the latest estimations were made, HAT control and surveillance were scaled up [6], and data collection and reporting were substantially improved, with WHO coordinating the efforts of the National Sleeping Sickness Control Programmes (NSSCPs), bilateral co-operation, Non-Governmental Organizations (NGOs), Research Institutes and the private sector [7]. Also, over the last 10 to 15 years, the increased availability and utilization of the Global Positioning System (GPS), remote sensing data and Geographical Information Systems (GIS) triggered the development of novel, more objective methodologies to map the risk of many diseases [8], [9], [10], [11]. Till recently, geospatial analysis had never been used to estimate HAT risk at the regional or African scale. In 2008, the Atlas of HAT was launched, aiming at assembling, harmonizing and mapping datasets on the geographic distribution of sleeping sickness in sub-Saharan Africa [12]. Comprehensive and accurate epidemiological maps were generated [4], [13], which laid the foundations for more objective, evidence-based estimations of sleeping sickness risk. Thereafter, a GIS-based methodology for risk estimation was developed and tested in six Central African countries [14]. In this methodology, harmonized epidemiological data and global human population layers were combined, thus enabling different levels of HAT risk to be estimated and mapped. ‘Risk’ was regarded as the likelihood of infection, and the likelihood was estimated as a function of disease intensity and geographical proximity to HAT reported cases. In the present study, the methodology tested in the six Central African countries was applied at the continental level in order to map the risk of sleeping sickness in sub-Saharan Africa and to estimate at-risk population. In an effort to generate comparable estimates for both T. b. gambiense and T. b. rhodesiense infections, the same methodology was applied to all HAT-endemic countries and to both forms of the disease. Materials and Methods Input data Georeferenced layers of sleeping sickness occurrence and human population for the period 2000–2009 constituted the input for the present HAT risk mapping exercise. The number and the geographic distribution of HAT cases were provided by the latest update of the Atlas of HAT (reference date: 31 May 2012), thus including 170,492 cases of T. b. gambiense infection and 5,084 of T. b. rhodesiense, for a total of 175,576 HAT reported cases. Reported cases originated from twenty countries, namely Angola, Cameroon, Central African Republic, Chad, Congo, Côte d'Ivoire, Democratic Republic of the Congo, Equatorial Guinea, Gabon, Ghana, Guinea, Kenya, Malawi, Mozambique, Nigeria, Sudan, Uganda, United Republic of Tanzania, Zambia and Zimbabwe [4]. The Atlas provided village-level mapping for 81.0% of the cases, corresponding to 19,828 different locations mapped. The average spatial accuracy for reported cases mapped was estimated at ≈1,000 m using methods already described [4]. For the remaining 19.0% of the cases, village-level information was unavailable but the area of occurrence was known (e.g. focus, parish, health zone, etc.). For the purpose of risk estimation, these cases were apportioned among the endemic villages of their area of occurrence by means of proportional allocation [14]. Reported cases also included those diagnosed in non-endemic countries – most notably in travellers and migrants – which in the Atlas of HAT are mapped in the probable place of infection and flagged as ‘exported’ [15]. For T. b. rhodesiense exported cases, the place of infection most frequently corresponds to a park or another type of protected area. For the sole purpose of risk estimation, T. b. rhodesiense exported cases were randomly distributed within the boundaries of their respective park/protected area of origin. The geographic distribution of human population was derived from Landscan ™ databases [16]. Landscan provides global grids where census counts are allocated to grid nodes on the basis of probability coefficients. The spatial resolution of Landscan is 30 arcseconds (≈1 km at the equator), and the population layer is updated on a yearly basis. To delineate risk areas, an average of the ten Landscan population datasets from 2000 to 2009 was used. Subsequently, Landscan 2009 was combined with the risk map to provide estimates of people at risk at the end of the study period [14]. Spatial smoothing Both input layers (i.e. sleeping sickness cases and human population) can be regarded as spatial point processes, and thus amenable to spatial smoothing. Spatial smoothing methods are used in epidemiology to facilitate data analysis, and they allow to transform point layers into continuous surfaces of intensity. In this context, the intensity λ( s ) of a point process is the mean number of events per unit area at the point s [17]. The term ‘event’ is used to distinguish the location of an observation ( s i) from any other arbitrary location s within a study region R. Spatial smoothing techniques can be based on localized averages or more complex, three-dimensional mathematical functions (e.g. kernels), but they all rely on a moving window, whose size and shape determines how far the effect of an event will reach [18]. For this study, intensity was estimated through a kernel function k (·), so that the intensity estimate could be expressed as: Here, s was a location anywhere in the study region R, s 1 ,.., s n were the locations of the n observed events, and k(·) represented the kernel weighting function. τ>0 is normally referred to as the bandwidth or search radius, and s i were the events that lay within the area of influence as controlled by τ. There are various shapes of kernel to choose from, all usually represented by symmetric bivariate functions decreasing radially. The choice of shape has relatively little effect on the resulting intensity estimate [19], [20] and we used a quadratic kernel [20]. A more important choice is the selection of the bandwidth τ, the rule being that the higher τ, the smoother the intensity surface. Although different techniques are available for selecting τ [21], [22], no optimal value exists, and characteristics of the biological process under study are often better suited to guide the choice, so that the smoothed surface provide insights into the underlying data [18]. By taking into account the epidemiological features of HAT, the behaviour of the tsetse vector and the mobility of people in the average rural African milieu where HAT occurs, a search radius of 30 km was chosen [14]. In particular, a few studies investigated the daily distance covered by people living in HAT foci [23], [24], [25] and revealed that this tends not to exceed 15 km. The distance of 30 km enabled to take into account, at least in part, also people's movements that do not occur on a daily basis. Figure 1 provides a three-dimensional illustration of the output of spatial smoothing. In the example, the point layer used as input comprised one single ‘event’ (i.e. one HAT case) localized at the centre of the grid. 10.1371/journal.pntd.0001859.g001 Figure 1 Three-dimensional rendering of the disease intensity surface for one case of HAT, as derived from spatial smoothing (Kernel function k(·): quadratic; bandwidth τ: 30 km; output resolution: 1 km). Delineation of risk areas Prior to spatial smoothing, the number of HAT cases reported in 2000–2009 was divided by ten, thus providing the average number of cases per annum (p.a.). Similarly, Landscan human population layers from 2000 to 2009 were averaged [14]. Both averaged layers were subjected to spatial smoothing using the same quadratic kernel function. Importantly, both intensity surfaces were generated using the same 30 km bandwidth [26]. Spatial smoothing resulted in the two surfaces and , which represent the average annual estimates of disease intensity and population intensity respectively. The input to and output of spatial smoothing are exemplified in Figure 2. 10.1371/journal.pntd.0001859.g002 Figure 2 The foci of Bodo-Moissala in Chad and Batangafo-Maitikoulou in Central African Republic. (a) Distribution of HAT cases; (b) Average population distribution (Landscan); (c) Annual intensity of HAT cases as derived from (a) through spatial smoothing; (d) Population intensity as derived from (b) through spatial smoothing. The ratio between the intensity of HAT cases and the population intensity can be defined as the disease risk [18], so that a risk function was estimated as: Thresholds were applied to the risk function in order to distinguish and map different categories of risk, ranging from ‘very low’ to ‘very high’ (Table 1). Outside the areas mapped as at risk of HAT, i.e. in areas where <1 HAT case per 106 inhabitants p.a. was reported, the risk to contract the disease was considered ‘marginal’. These marginal areas were not taken into account further in this study. The term ‘marginal’ was chosen because, in such areas, risk could not be considered as non-existent, since residents of these zones could still expose themselves to infection if visiting transmission areas. 10.1371/journal.pntd.0001859.t001 Table 1 Thresholds for the definition of sleeping sickness risk categories. Category of risk HAT cases per annum Very high ≥10−2 ≥1 per 102 people High 10−3≤R<10−2 ≥1 per 103 people AND<1 per 102 people Moderate 10−4≤R<10−3 ≥1 per 104 people AND<1 per 103 people Low 10−5≤R<10−4 ≥1 per 105 people AND<1 per 104 people Very low 10−6≤R<10−5 ≥1 per 106 people AND<1 per 105 people Estimates of people at risk The map depicting the different categories of HAT risk was combined with Landscan 2009 dataset to estimate the number of people at risk at the end of the study period [14]. Results An area of 1.55 million km2 in Africa is estimated to be at various levels of HAT risk, ranging from ‘very high’ to ‘very low’ (Table 2 and Table 3). Areas at ‘very high’ to ‘moderate’ risk account for 719 thousand km2 (46.3%) and areas at ‘low’ to ‘very low’ risk account for the remaining 833 thousand km2 (53.7%). 10.1371/journal.pntd.0001859.t002 Table 2 Areas at risk of T. b. gambiense infection in western and central Africa (km2 ×102). Country Total country area* (km2 ×102) Area at risk (km2 ×102) Very High High Moderate Low Very Low Total at risk % of total country area Angola 12,538 - 568 597 480 158 1,803 14.4 Cameroon 4,664 - - 22 79 71 173 3.7 Central African Republic 6,244 55 141 204 161 97 659 10.6 Chad 12,725 - 33 34 36 39 142 1.1 Congo 3,385 21 199 388 372 182 1,162 34.3 Côte d'Ivoire 3,214 - - 23 82 182 286 8.9 Democratic Republic of the Congo 23,041 27 996 2,717 2,599 1,563 7,902 34.3 Equatorial Guinea 270 - 4 37 16 8 65 24.1 Gabon 2,660 - 6 57 69 35 167 6.3 Guinea 2,461 - 1 42 53 88 184 7.5 Nigeria 9,089 - - - 16 55 70 0.8 Sierra Leone 728 - - - 7 11 18 2.5 South Sudan 6,334 21 260 379 265 76 1,001 15.8 Uganda 2,055 - 13 91 42 28 175 8.5 Other Endemic Countries** 60,316 - - - - - - - Total 149,722 124 2,222 4,591 4,277 2,594 13,808 9.2 * Land area. The area of surface water bodies as depicted in the Shuttle Radar Topography Mission – River-Surface Water Bodies dataset [43] is not included. ** Countries at marginal risk: Benin, Burkina Faso, Gambia, Ghana, Guinea-Bissau, Liberia, Mali, Niger, Senegal and Togo. 10.1371/journal.pntd.0001859.t003 Table 3 Areas at risk of T. b. rhodesiense infection in eastern and southern Africa (km2 ×102). Country Total country area* (km2 ×102)* Area at risk (km2 ×102) Very High High Moderate Low Very Low Total at risk % of total country area Burundi 251 - - - - 2 2 0.8 Kenya 5,749 - - - 5 26 31 0.5 Malawi 948 - - 33 53 52 138 14.6 Mozambique 7,791 - - - 5 34 39 0.5 United Republic of Tanzania 8,863 - 16 125 229 286 657 7.4 Uganda 2,055 - - 45 146 97 288 14.0 Zambia 7,425 - - 33 221 224 478 6.4 Zimbabwe 3,884 - - - 9 69 78 2.0 Other Endemic Countries** 25,685 - - - - - - - Total 62,650 - 16 236 667 792 1,711 2.7 * Land area. The area of surface water bodies as depicted in the Shuttle Radar Topography Mission – River-Surface Water Bodies dataset [43] is not included. ** Countries at marginal risk: Botswana, Ethiopia, Namibia, Rwanda and Swaziland. The total population at risk of sleeping sickness is estimated at 69.3 million (Table 4 and Table 5). The categories at ‘very high’ to ‘moderate’ risk account for a third of the people at risk (21 million), whilst the remaining two thirds (48.3 million) are at ‘low’ to ‘very low’ risk. 10.1371/journal.pntd.0001859.t004 Table 4 Population at risk of T. b. gambiense infection in western and central Africa (no. persons ×103). Country Total country population* (no. persons ×103) Population at risk (no. persons ×103) Very High High Moderate Low Very Low Total at risk % of total country population Angola 12,799 - 740 749 3,049 229 4,767 37.2 Cameroon 18,879 - - 28 238 365 631 3.3 Central African Republic 4,511 28 41 130 138 99 435 9.6 Chad 10,329 - 109 114 120 123 465 4.5 Congo 4,013 4 109 451 1,825 177 2,566 63.9 Côte d'Ivoire 20,617 - - 230 722 1,720 2,672 13.0 Democratic Republic of the Congo 68,693 23 3,546 10,767 15,674 6,237 36,247 52.8 Equatorial Guinea 633 - 2 27 8 6 43 6.8 Gabon 1,515 - 2 21 19 761 803 53.0 Guinea 10,058 - - 187 488 1,932 2,606 25.9 Nigeria 149,229 - - - 368 1,814 2,183 1.5 Sierra Leone 5,132 - - 1 83 87 170 3.3 South Sudan 6,996 15 401 453 334 67 1,270 18.2 Uganda 32,370 - 142 1,275 456 251 2,124 6.6 Other Endemic Countries** 103,673 - - - - - - - Total 449,447 70 5,092 14,431 23,521 13,869 56,983 12.7 * As per Landscan 2009. ** Countries at marginal risk: Benin, Burkina Faso, Gambia, Ghana, Guinea-Bissau, Liberia, Mali, Niger, Senegal and Togo. 10.1371/journal.pntd.0001859.t005 Table 5 Population at risk of T. b. rhodesiense infection in eastern and southern Africa (no. persons ×103). Country Total country population* (no. persons ×103) Risk (no. persons ×103) Very High High Moderate Low Very Low Total at risk % of total country population Burundi 9,511 - - - 5 33 38 0.4 Kenya 39,003 - - - 254 870 1,124 2.9 Malawi 15,029 - - 194 217 499 910 6.1 Mozambique 21,669 - - - 5 53 58 0.3 United Republic of Tanzania 41,049 - 22 373 621 808 1,824 4.4 Uganda 32,370 - - 847 4,734 2,295 7,877 24.3 Zambia 11,863 - - 14 122 279 416 3.5 Zimbabwe 11,393 - - - 5 88 94 0.8 Other Endemic Countries** 101,420 - - - - - - - Total 283,306 - 22 1,429 5,964 4,927 12,341 4.4 * As per Landscan 2009. ** Countries at marginal risk: Botswana, Ethiopia, Namibia, Rwanda and Swaziland. The geographic distribution of risk areas in central Africa, western Africa and eastern-southern Africa are presented in Figure 3, Figure 4 and Figure 5 respectively. Country-level risk maps are provided in Supporting Information (Maps S1). Focus level risk maps will be provided at HAT/WHO website: http://www.who.int/trypanosomiasis_african/country/en/. 10.1371/journal.pntd.0001859.g003 Figure 3 The risk of T. b. gambiense infection in central Africa (2000–2009). 10.1371/journal.pntd.0001859.g004 Figure 4 The risk of T. b. gambiense infection in western Africa (2000–2009). 10.1371/journal.pntd.0001859.g005 Figure 5 The risk of T. b. rhodesiense infection in eastern and southern Africa (2000–2009). Trypanosoma brucei gambiense A total of 57 million people are estimated to be at risk of contracting Gambian sleeping sickness (Table 4). This population is distributed over a surface of 1.38 million km2 (Table 2). Approximately 19.6 million (34.4%) of the people at risk live in areas classified at moderate risk or higher, which correspond to areas reporting ≥1 HAT case per 104 inhabitants p.a. The remaining 65.6% (≈37.4 million) live in areas classified at low to very low risk. Central Africa accounts for the vast majority of people at risk of T. b. gambiense infection (Figure 3). The risk patterns in Cameroon, Central African Republic, Chad, Congo, Equatorial Guinea, and Gabon have already been described in some detail elsewhere [14]. In essence, areas at very high to high risk are localized in southeastern and northwestern Central African Republic, southern Chad, along lengthy stretches of the Congo river north of Brazzaville, and by the Atlantic coast on both sides of the border between Gabon and Equatorial Guinea. The Democratic Republic of the Congo is, by far, the country with the highest number of people at risk (≈36.2 million) and the largest at-risk area (≈790 thousand km2). Areas at risk can be found in the provinces of Bandundu, Bas Congo, Équateur, Kasai-Occidental, Kasai-Oriental, Katanga, Kinshasa, Maniema, Orientale, and South Kivu. More details on the risk and the geographic distribution of sleeping sickness in the Democratic Republic of the Congo will be provided in a separate paper. In South Sudan, a sizable area (≈100 thousand km2) and over a million people are estimated to be at risk of sleeping sickness, including a number of high to very high risk areas in Central and Western Equatoria provinces. These findings highlight the need for continued surveillance in this country [27]. In neighbouring Uganda, the area at risk of T. b. gambiense infection (≈17 thousand km2) is located in the North-west of the country. It mostly falls in the category ‘moderate’, and it accounts for over two million people at risk. In Angola, sleeping sickness is found in the northwestern part of the country (≈180 thousand km2 – 4.8 million people at risk), and most of the high-risk areas are located in the Provinces of Bengo, Kwanza Norte, Uige and Zaire. In western Africa, the most affected endemic areas are categorized at moderate risk and they are localized in costal Guinea and central Côte d'Ivoire (Figure 4). Areas at lower risk fringe the main foci, but they are also found in other zones such as southern Guinea and southern Nigeria. Trypanosoma brucei rhodesiense Rhodesian sleeping sickness is estimated to threaten a total of 12.3 million people in eastern and southern Africa (Table 5). This population is distributed over a surface of 171 thousand km2 (Table 3 and Figure 5). Of the total population at risk of T. b. rhodesiense, a minor proportion (≈1.4 million – 11.8%) live in areas classified at moderate risk or higher, the rest (≈10.9 million – 88.2%) live in areas classified at low to very low risk. In Uganda, Rhodesian HAT threatens a population of ≈7.9 million, and the risk area (29 thousand km2) stretches from the northern shores of Lake Victoria up to Lira District, north of Lake Kyoga. The areas in Uganda where risk is relatively higher (i.e. ‘moderate’) broadly correspond to the districts of Soroti, Kaberamaido and northwestern Iganga. Because of a comparatively lower human population density, some areas in the United Republic of Tanzania are estimated to be characterized by higher levels of risk than Uganda, despite fewer reported cases of HAT. In particular, risk is estimated to be high in proximity to the Ugalla River Forest Reserve (Tabora Province). Also all of the other risk areas in the United Republic of Tanzania are associated in one way or another to protected areas, most notably the Moyowosi Game Reserve and the natural reservations in the northeast of the country (i.e. Serengeti, Ngorongoro and Tarangire). Overall, ≈1.8 million people (66 thousand km2) are estimated to be at risk in this country. In Kenya, HAT risk ranging from low to very low is localized in the western part of the country, adjacent to risk areas in neighbouring Uganda. Also, although no cases were reported from the Masai Mara National Reserve during the study period, part of its area is estimated to be at risk, as influenced by the risk observed in the neighbouring Serengeti National Park (United Republic of Tanzania). Interestingly, two cases have been reported recently (2012) in travellers visiting the Masai Mara [28]. Nature reserves also shape the patterns of HAT risk at the southernmost limit of T. b. rhodesiense distribution, most notably in Malawi, Zambia and Zimbabwe. In this region, the highest number of people at risk is found in Malawi (≈0.9 million people), where risk is associated to the wildlife reserves of Vwaza Marsh, Nkota-Kota, and the Kasungu National Park. In Zambia (≈0.4 million people at risk), risk areas are scattered across the country, predominantly in the East and most notably around the North and South Luangwa National Parks. In Zimbabwe, an area of 7.8 thousand km2 is estimated to be at risk (94 thousand people). This risk zone in associated to the Mana Pools National Park and the Lake Kariba. Discussion Approximately 70 million people (1.55 million km2) are estimated to be at various levels of HAT risk in Africa. This corresponds to 10% of the total population and 7.4% of the total area of the endemic countries. This figure is not far from estimates made by WHO over the last thirty years, (78.54 million in 1985 [5] and 60 million in 1995 [1]). However, the meaning and interpretation of these various figures substantially differ, and it is unwarranted to make comparisons between the results of the present study and previous figures, especially if the goal is to explore trends. In the early 80 s, the only way to derive country- and continental-level estimates of people at risk of HAT was to collate heterogeneous information from the Ministries of Health of the affected countries [5]. A decade later, an attempt was made to update the estimates [1], but the degree of subjectivity in the methodology and the reliance on expert opinion remained high. By contrast, the present methodology is quantitative, reproducible, based on evidence and provides a categorization of risk. The use of global human population layers [16] and the regular update of the Atlas of HAT [4] will enable regular and comparable updates to be made. The presented maps of different HAT risk categories will help to plan the most appropriate site-specific strategies for control and surveillance, and they will contribute to ongoing efforts aimed at the sustainable elimination of the sleeping sickness. However, the reported incidence levels underpinning the different risk categories differ by orders of magnitude, so that a more accurate representation of HAT risk can be given by focusing on the different risk categories. For example, 21 million of people (0.7 million km2) are estimated to live at ‘moderate’ to ‘very high’ risk of infection. These are the areas where the most intensive control measures need to be deployed. Low to very low risk categories account for ≈48 million people (0.8 million km2). In these areas, cost-effective and adapted measures must be applied for a sustainable control. From the methodological standpoint, assumptions affect all estimates of disease risk, including those presented in this paper. One important assumption in the proposed methodology is that it is possible to use the same approach based on human cases of trypanosomiasis to estimate risk of both forms of sleeping sickness. This assumption met the primary goal of generating continental risk estimates in a consistent fashion. However, especially for T. b. rhodesiense, different approaches could be explored, explicitly addressing the pronounced zoonotic dimension of this form of the disease. Another important choice in the proposed methodology is that of the 30 km bandwidth – the distance from affected locations beyond which disease intensity is considered zero. Sensitivity analysis conducted for six central African countries showed that there is a positive linear relationship between bandwidth on the one hand, and the extent of risk areas and the at-risk population on the other [29], [30]. However, the categories at higher risk were shown to be the least affected by bandwidth. Therefore, as a rule, increasing the bandwidth would inflate the low-risk categories, but it would have a more limited effect on the delineation of areas at higher risk. The estimates presented here also rest on the assumption of isotropy for the risk function. In the future, anisotropy may be explored in an effort to account for the linear nature of some important landscape features such as rivers or roads. When interpreting the presented risk estimates it is important to acknowledge the uncertainty inherent in the human population datasets used as denominator [31]. Also, it has to be borne in mind that no attempt was made to model HAT under-detection and under-reporting, which, despite recent progress in surveillance [12], are still known to occur. HAT under-detection can occur both in areas covered by active or passive surveillance and in areas that, because of remoteness or insecurity, are off the radar of health care services, and therefore sometimes referred to as ‘blind spots’. These two types of under-detection are expected to have different effects on risk estimation and mapping. The former is likely to impinge mainly on the level of risk, with a limited effect on the delineation of risk areas and on the estimates of the total population at risk. By contrast, if under-detection occurs in zones were no surveillance is in place, a few areas at risk will fail to be captured and mapped, which is bound to result in underestimation of the total population at risk. In the proposed risk mapping methodology, the latter areas would have been included in the ‘marginal’ risk category. Efforts should be made to identify and accurately delineate these hypothetical transmission zones, finding adaptive strategies to cope with the constraints of remoteness and insecurity that affect them. Knowing the true epidemiological status of these areas has vast implications not only for risk estimation but most crucially for the prospects of HAT elimination. For the chronic T. b. gambiense infection [32], under-detection can be addressed by continuous passive case detection and regular active screening surveys. The fact that we took into consideration ten-year data on disease occurrence and control activities should contribute to the robustness of the T. b. gambiense risk estimates. However, in the case of T. b. rhodesiense, due to the acuteness and rapid progression of infection, under-detection poses more serious challenges. Although attempt were made to model under-detection for T. b. rhodesiense [33], both data and methodological constraints prevent these methods from being applied at the continental-level. In the future, methodologies should be developed to estimate and map the coverage of active and passive surveillance. These would provide valuable information complementing risk maps, whilst also assisting in optimizing field interventions. The temporal dimension is also crucial when interpreting risk maps. The proposed estimates were based on an average of HAT reported cases for a ten-year period. No weighting for the different reporting years was applied, despite the fact that a reduction in reported cases was observed during the last years of the study period. As a result, all cases contributed equally regardless of when exactly they were reported. Importantly, the estimates of people at risk presented in this paper, being based on reported cases, can not account for the possible future spread of HAT, and the risk thereof, into presently unaffected areas. Other approaches to risk modelling could be more interested in predicting the future risk of sleeping sickness, focusing on the environmental suitability for HAT rather than on its present occupancy. To this end, the relationships are to be explored between HAT occurrence and a range of factors, including human and livestock population movements [34], environmental, climatic and socio-economic variables, as well as disease and vector control. The potential of this type of models has been investigated in a few local contexts, for example in southeastern Uganda for T. b. rhodesiense [35], [36], [37], [38], and coastal Guinea for T. b. gambiense [25]. Recent attempts have also tried to address risk forecasts at the regional level in relation to climate change [39]. The potential of various modelling frameworks could be explored for modelling the future risk of HAT [40], [41]. The growing range of spatially explicit environmental datasets [42] and increased computational power enable these models to be applied even across large geographical areas. Interpretation of model outputs will probably be the most serious challenge. In fact, incompleteness and biases in the real-world epidemiological records often blur the line between concepts such as the theoretical fundamental niche of a pathogen and its realized niche. Where estimates of prevalence are available, most notably in T. b. gambiense areas, model-based geostatistics could also be applied, which utilize Bayesian methods of statistical inference and enable rigorous assessment of uncertainty [11]. Their potential for, and applicability to, a low-prevalence, focal disease such as HAT would be interesting to explore. Supporting Information Map S1 Maps of distribution of population at risk of human African trypanosomiasis in 21 disease endemic countries, where any level of risk has been identified during the period 2000–2009. Countries are organized on geographical order, west to east + north to south, and from T.b.gambiense to T.b.rhodesiense endemic countries: Guinea, Sierra Leone, Côte d'Ivoire, Nigeria, Cameroon, Chad, Central African Republic, South Sudan, Equatorial Guinea, Gabon, Congo, The Democratic Republic of the Congo, Angola, Uganda, Kenya, United Republic of Tanzania, Burundi, Zambia, Malawi, Mozambique and Zimbabwe. (PDF) Click here for additional data file.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Eliminating Human African Trypanosomiasis: Where Do We Stand and What Comes Next>

            While the number of new detected cases of HAT is falling, say the authors, sleeping sickness could suffer the "punishment of success," receiving lower priority by public and private health institutions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Human African Trypanosomiasis Control and Surveillance Programme of the World Health Organization 2000–2009: The Way Forward

              Background One century ago human African trypanosomiasis (HAT), also known as sleeping sickness, was believed to curb the development of colonial territories. As soon as the cause of the disease was clearly identified, colonial authorities established extensive control operations, fearing an unpopulated continent and a shortage of human labour to exploit natural resources. Systematic screening, treatment, and patient follow-up was established in western and central Africa for the gambiense form of the disease while, animal reservoir and vector control was mainly implemented in eastern and southern Africa for the rhodesiense form. By the 1960s, transmission was practically interrupted in all endemic areas, providing evidence that the elimination of the disease as a public health problem was feasible and could be achieved with basic tools. Thereafter, the rarity of cases led to a loss of interest in sustained surveillance, and the risk of re-emergence of the disease was overlooked. Thus in the 1980s the disease re-emerged. By the 1990s, flare-ups were observed throughout past endemic areas, leading to a worrisome increase in the number of reported cases. At this time, nongovernmental organizations (NGOs) played a crucial role in the control of HAT. However, their interventions were mainly focused on remote and insecure areas. As emergency operators, their policy understandably excluded support to National Sleeping Sickness Control Programmes (NSSCPs), which resulted in (i) the establishment of substitute HAT control systems (ii), the maintenance of a large part of the population at risk out of the umbrella of NGO projects, and (iii) the difficulty for national programmes to sustain control achievements after the NGOs' withdrawal. Concurrently, bilateral cooperation continued to support NSSCPs in some historically linked countries. Concerning HAT screening, the card agglutination trypanosomiasis test (CATT) for serological screening of populations at risk of HAT gambiense was developed during the 1970s [1], but its large-scale production encountered many problems, hindering its availability [2]; in addition, production of anti-trypanosomal drugs was seriously threatened due to the lower economic return for manufacturers. Research for new diagnostic tools and drugs was scarce [3]. Only eflornithine, initially developed for cancer treatment, was finally registered for the treatment of the gambiense form of the disease in 1990 [4]. But its cost and complex distribution and administration requirements made it inappropriate for the under-equipped peripheral health services in remote rural areas where HAT was prevalent. Only some well-funded NGOs were able to afford the cost of eflornithine treatment. During the 1990s, security constraints due to civil wars and social upheavals complicated HAT control by preventing access to a large number of HAT-endemic areas, leading to difficulties in reaching a large number of affected populations and consequently to a considerable lack of epidemiological information. The World Health Organization (WHO) Expert Committee on HAT Control and Surveillance held in 1995, in consideration of the huge uncertainties between the reported cases and the factual field situation, estimated that the true number of cases was at least 10 times more than reported. Thus from the 30,000 reported cases annually, it was estimated that some 300,000 infected individuals remained ignored in the field [5]. In 1997, the 50th World Health Assembly expressed its concerns about the major recrudescence of cases by adopting a resolution to raise awareness and national and international interest [6]. Subsequently, WHO enhanced its coordinating role and promoted networking with partners, developing a strong advocacy and awareness campaign. As a result, the private sector recognized its responsibility, which led Aventis Pharma and Bayer Health Care to grant in 2001 and 2002 a substantial support to WHO for the control and surveillance of HAT. This support included HAT drug donation and financial contributions that allowed WHO to strengthen its support to disease-endemic countries (DECs). The importance of the various components of the epidemiology of trypanosomiasis (human, animal, vector control, agricultural activity, and livestock production) and their impact on the development of rural Africa led WHO, in 1995, to promote together with the Food and Agriculture Organization (FAO), the International Atomic Energy Agency (IAEA), and the African Union InterAfrican Bureau for Animal Resources (AU-IBAR), an inter-sectoral initiative that ultimately became, in 1997, the Programme Against African Trypanosomiasis (PAAT, http://www.fao.org/ag/againfo/programmes/en/paat/disease.html). In parallel, African heads of state and governments established during the African Union Summit in Lomé in 2000 the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC, http://www.africa-union.org/Structure_of_the_Commission/depPattec.htm) with the objective to render Africa a tsetse- and trypanosomiasis-free continent. Current Situation Between 2000 and 2009, out of 36 countries listed as endemic, 24 received the exclusive support of WHO either to assess the epidemiological status of HAT or to establish control and surveillance activities (Benin, Burkina Faso, Cameroon, Chad, Côte d'Ivoire, Gabon, Ghana, Guinea, Guinea Bissau, Kenya, Liberia, Malawi, Mali, Mozambique, Nigeria, Rwanda, Senegal, Sierra Leone, Swaziland, Togo, Uganda, United Republic of Tanzania, Zambia, and Zimbabwe); six received support from WHO as well as NGOs or through bilateral cooperation (Angola, Central African Republic [CAR], Congo, Democratic Republic of the Congo [DRC], Equatorial Guinea, and Sudan); and finally, six countries, Botswana, Burundi, Ethiopia, Gambia, Namibia, and Niger, which are listed as endemic but not having reported any cases in the last 20 years, have not received any support yet. The 30 countries mentioned above received WHO support in the form of Technical assistance. It is provided either by WHO staff or by WHO temporary advisers. Access to diagnosis. This support includes the equipment, reagents, logistics, and funds to allow the national teams to reach HAT transmission areas to perform active case-finding surveys and set up passive surveillance. Training. As part of capacity building, targeted at two technical levels; (a) training on site, hands on (410 technical staff from 23 disease-endemic countries were trained); (b) participation in the International Course on African Trypanosomoses implemented in collaboration with the Association against Trypanosomiasis in Africa (105 programme managers or scientists from 22 countries have participated in either one of the five courses). Access to treatment. This covers the provision of drugs as well as patient accessibility. During the last decade, WHO has covered the need of DECs by distributing, in collaboration with Médecins sans Frontières (MSF)-Logistics, 594,200 vials of melarsoprol, 576,375 vials of pentamidine, 477,542 vials of eflornithine, and 13,597 vials of suramin. One main objective of WHO in the “access to treatment” initiative was to reduce the use of the arsenic derivative melarsoprol for the treatment of second stage gambiense cases by making eflornithine, actually the sole alternative to melarsoprol, accessible. Indeed, during the period 2003–2006, despite the availability of eflornithine and the known toxicity of melarsoprol, the latter remained widely used and 88% of the second stage gambiense cases were treated with this drug (Figure 1). Only well-funded NGOs could afford the costly and complex use of eflornithine as first line treatment, while NSSCPs used eflornithine exclusively to treat melarsoprol relapses. This was demonstrated during the period 2003–2006 by a ratio of eflornithine distribution of 9 to 1 to NGOs versus NSSCPs (Figure 2). 10.1371/journal.pntd.0001007.g001 Figure 1 Percentage of second stage T. b. gambiense patients treated according to drug used. Eflornithine versus melarsoprol (2003–2009). 10.1371/journal.pntd.0001007.g002 Figure 2 Institutional rate use of eflornithine. National Sleeping Sickness Control Programmes versus nongovernmental organizations (2003–2009). In 2006, a number of DECs requested the support of WHO to train their staff on the use of eflornithine and requested the provision of the necessary equipment to switch gradually from melarsoprol to eflornithine as first line treatment. Subsequently, a training of trainers was organized in Southern Sudan and a kit containing the drugs as well as all the materials needed to administer two full eflornithine treatments was designed by WHO and distributed with the collaboration of MSF-Logistics [7]. The kit for two eflornithine treatments weighted 40 kg at a cost of US$1,420. This particular effort in terms of logistics and funding allowed DECs to regularly decrease their use of melarsoprol and increase the use of eflornithine for the treatment of second stage gambiense cases. Consequently, in 2009, a 57% reduction in the use of melarsoprol was recorded. Indeed, the percentage of patients treated with this drug fell from 88% to 38% (Figure 1), and subsequently the use of eflornithine by NSSCPs versus NGOs increased by 250% (from 20% to 70%) (Figure 2). Nifurtimox, registered for Chagas disease, showed efficacy during compassionate use in melarsoprol refractory cases [8], [9]. In order to simplify the eflornithine schedule, attempts were made to demonstrate that a therapy combining nifurtimox and eflornithine could contribute to a simpler administration of the drugs; some trials took place in DRC during the late 1990s [10] and in Uganda during the early 2000s [11], [12]. In 2003, an extensive nifurtimox/eflornithine combination treatment (NECT) clinical trial started in Congo and later in DRC involving MSF, Epicentre, the Special Programme for Research & Training in Tropical Diseases (TDR), and Drugs for Neglected Diseases initiative (DNDi). The trial ended in 2008. Results indicated that NECT presented no inferior efficacy and safety than the eflornithine monotherapy [13]. Following the inclusion of the NECT on the WHO Essential Medicines List in May 2009 [14], NSSCPs requested WHO to train their staff in order to incorporate this new combination in their national policy. A training for trainers was organized in Kinshasa in November 2009 for French speaking countries and another for English speaking countries in Uganda in February 2010 [15]. Thereafter, a new kit for NECT treatment was designed. Thanks to the reduction of drug quantity and materials, using the same packaging form as for the eflornithine monotherapy treatment kits, a new kit for four full NECT treatments weighting 36 kg at a cost of US$1,440 was produced. This kit has already been distributed to nine countries (reporting together 96% of all Trypanosoma brucei gambiense cases in 2009): Cameroon, CAR, Chad, Côte d'Ivoire, DRC, Equatorial Guinea, Gabon, Sudan, and Uganda. However, NECT does not change the paradigm of HAT treatment since it remains logistically complicated to implement. Nevertheless, it is anticipated that NECT will contribute to sustain the already observed decreasing trend of melarsoprol use for the treatment of second stage T. b. gambiense infections [16]. During the period 2006–2009, WHO promoted research for better knowledge of HAT epidemiology and for the development of new tools. With that objective in mind, 23 agreements for “performance of work” were concluded with research institutions of 11 countries (Belgium, Burkina Faso, Democratic Republic of the Congo, France, Germany, Italy, Kenya, Malawi, Uganda, United Kingdom and the United Republic of Tanzania). In 2006, WHO and the Foundation for Innovative New Diagnostics (FIND, http://www.finddiagnostics.org/) signed a 5-year Memorandum of Understanding to promote the development of simple and more sensitive and specific diagnostic tests. WHO took the responsibility to set up a specimen bank to facilitate the evaluation of relevant new diagnostic tools and to reduce the need for field trials. Currently, samples from 1,700 people including patients, seropositive-suspects, and controls have been collected from 14 sites in DRC, Guinea, Chad, Uganda, Malawi, and United Republic of Tanzania. More than 20,000 samples (including serum, plasma, white blood cells, urine, saliva, and CSF) are stored in the central repository bank at the Institut Pasteur in Paris. Strong collaboration has been established with groups working on the development of new drugs, mainly the Consortium for Parasitic Drug Development (CPDD, http://www.unc.edu/~jonessk/) and DNDi (http://www.dndi.org/). In addition, the Division of Parasitic Diseases of the National Center for Infectious Diseases, Centers for Disease Control and Prevention in Atlanta, United States, the Parasite Diagnostics Unit from the Institute of Tropical Medicine (ITM) in Antwerp, Belgium, and the Research Unit of the Institut de Recherche pour le Développement (IRD) based in the International Centre for Research and Development in Livestock in Sub Humid Areas in Bobo-Diulaso, Burkina Faso (CIRDES), have been nominated as WHO Collaborating Centres. In February 2008, WHO launched the Atlas of HAT initiative to map all reported cases for the period 2000–2009 at the village level. This initiative is jointly implemented with FAO in the framework of the PAAT. Presently, mapping includes 23 out the 25 countries having reported at least one case in the last 10 years. In the two remaining countries, Angola and DRC, data processing is ongoing. The Atlas database also includes epidemiological information that can be used by NSSCPs, NGOs, and research institutions to monitor and evaluate the impact of control activities, to assess epidemiological trends, and to plan control or research activities [17]. As a consequence of these activities, the number of new cases reported to WHO in 2009 has dropped below 10,000 for the first time in 50 years [18]. It represents a decrease of 63% since 2000 (Figure 3). In 2009, only two countries have reported more than 1,000 new cases, namely CAR and DRC representing, respectively, 11% and 73% of the total cases reported. One country, Chad, has reported more than 500 but less than 1,000 new cases. Three countries (Angola, Sudan, and Uganda) have reported more than 100 but less than 500 new cases. Eleven countries have reported less than 100 cases: Cameroon, Congo, Côte d'Ivoire, Equatorial Guinea, Gabon, Guinea, Kenya, Malawi, United Republic of Tanzania, Zambia, and Zimbabwe. 10.1371/journal.pntd.0001007.g003 Figure 3 Evolution of reported cases of both forms of human African trypanosomiasis (1998–2009). Finally, 19 countries listed as being HAT endemic reported no cases in 2009. Seven of these have performed HAT surveillance activities: Benin, Burkina Faso, Ghana, Mali, Nigeria, Sierra Leone, and Togo. Nine have no regular surveillance activities but have reported no cases for decades. These include Burundi, Ethiopia, Gambia, Guinea Bissau, Liberia, Mozambique, Niger, Rwanda, and Senegal; however, these latter countries deserve an assessment to clarify their epidemiological situation. Two countries, namely Botswana and Namibia, are considered disease transmission free due to the recently implemented, successful tsetse elimination campaigns [19], [20]. Finally, Swaziland has been shown through an extensive tsetse survey to harbour Glossina austeni, which has been never described as a HAT vector [21] (Figure 4). 10.1371/journal.pntd.0001007.g004 Figure 4 Classification of human African trypanosomiasis-endemic countries according to cases reported in 2009. Discussion During the last decade, the WHO public private partnership (PPP) established in 2001 with Aventis Pharma and renewed in 2006 by sanofi-aventis has made possible to carry out extensive HAT control activities and to strengthen the capacities of NSSCPs. The PPP has been complemented by bilateral cooperation, NGOs, research institutes, and Bayer AG's support. Furthermore, the cessation of civil wars and social upheavals has also substantially facilitated access to HAT-endemic areas. In 2009, the number of new cases of HAT reported to WHO has dropped below the symbolic number of 10,000, while in the period 2000–2009 the number of people screened increased due to the greater number of health care facilities involved in passive screening and the improvement of the performance of active case-finding surveys. Due to the improved knowledge of HAT distribution, WHO estimated in 2006 the factor gap between cases reported and cases infected to be three [22] instead of ten, as was thought in 1995 [5]. Considering the next steps to be implemented, it is important to note that the disease situation is not homogeneous throughout the continent. The gambiense form of the disease has in several foci already reached a prevalence threshold compatible with the concept “eliminated as a public health problem”. To consolidate such results, and ensure sustainability, an adapted control and surveillance approach will have to be implemented within the national health system. Whereas in other foci HAT remains a public health issue, it is mostly due to accessibility problems or security constraints [23]. Therefore, reinforced control measures must be maintained using the classical vertical approaches with the participation of existing health care structures. The rhodesiense form of HAT is a zoonotic disease involving cattle and game in the transmission cycle. Cattle movement is a continuous threat of disease transmission as well as spread and subsequently a source of outbreaks [24]. Furthermore, wildlife in protected areas are niches for contamination; there is a continuous risk for park rangers, the surrounding population, and visitors to become infected. Controlling this form of the disease requires a multisectoral approach. Therefore, it is crucial to reinforce local health care capacities for diagnosis and disease management as well as to establish effective coordination with veterinary and natural resources management services in charge of domestic animals, wild animals, and vector control. Despite encouraging results and exciting perspectives, the process remains fragile. At this stage, some obstacles are anticipated in the course of future control activities and a few issues should be carefully considered. These are mainly: The decline on contribution by NGOs and bilateral cooperation towards HAT control. During the period 2000–2009 there were nine bilateral and 38 NGO HAT projects, while in 2010 there remained only one bilateral (DRC) and five NGO projects (CAR, DRC, Sudan, and Uganda). The positive aspect of this situation is the decrease in HAT-related emergencies and the substantial improvement of country self-managed HAT control activities. The "tyranny of disability adjusted life years (DALYs)” expresses the lack of interest of donors when the burden of the disease is decreasing. Then, supporting institutions not only withdraw from HAT control but also from HAT research. With the reduced amount of funds available for control, it seems obvious that the responsibility to give “the last strike to the dying beast” will exclusively rely on the overloaded and weak national health services. Also, the loss of support for research will definitely eliminate any hope to get the needed, so long awaited new tools, not only to accelerate the current control process but also to boost the involvement of health services in HAT surveillance and control in order to sustain the achieved results. Such a situation will likely open the door for the re-emergence of the disease. While the control of cattle as a HAT reservoir appears to be a reachable objective that would in turn allow the control of T. b. rhodesiense infections in affected areas [25], the control of the disease in wildlife and the vector in protected areas and game reserves could be more complicated due to conservationist, ecological, and environmental considerations. Furthermore, close monitoring is needed to assess the impact of climate changes and demographic evolution [26], [27] in HAT transmission. Conclusion By the end of the last century, WHO and its partners had developed a strong and successful advocacy programme to secure access to diagnosis and treatment, ensuring availability of funds and drugs to support DECs. As a result, during the first decade of the current century, great advances have been made in HAT control. In 2007, a WHO informal consultation of the heads of NSSCPs held in Geneva reached the conclusion that elimination of the disease as a public health problem was possible [28]. This conclusion was based on the achievements obtained, on the current understanding of the epidemiology of the disease, and on the willingness of African heads of states and governments to eradicate tsetse and trypanosomiasis as stated when the PATTEC was established in 2000. The time has now come to sensitize stakeholders on the pertinence and ethical duty of embarking on the process of eliminating HAT as a public health problem despite the difficulties, obstacles, and threats that are expected in this process. Without such hammering approach, there is a risk of stagnation in control and surveillance as occurred in the late 1960s that ultimately led to the return of the disease. Today, WHO and its partners are committed to reinforcing and coordinating actions towards a sustainable elimination process [29]. While there are still technical aspects to be solved, the elimination of HAT as a public health problem will require social peace, institutional support, and adequate funding for its implementation. These last conditions are not exclusive to the control, elimination, and sustained surveillance of HAT but also for the overall development of DECs, which would contribute to the control of HAT as well. When targeting the elimination of HAT as a public health problem, the goal should be recognized as a major achievement but must never be considered as an end point. Without appropriate discrimination, the use of the word “elimination” may lead to risky conclusions. The disease believed to “no longer exist” will reach oblivion, placing in the background the required pressing efforts for a sustained and effective surveillance. It must be kept in mind that "elimination" is not synonymous with “eradication”. Elimination is only a point in time in the control process of the disease, at which stage the classical vertical control intervention approaches are no longer cost effective. Thus, the national health system must take the ownership of sustaining elimination by integrating HAT surveillance in their services while maintaining the capacity to react rapidly according to the analytical results of the surveillance outcome. Elimination should be considered as the beginning of a new process involving new actors. Therefore, elimination of HAT as a public health problem will require continuous efforts and innovative approaches. There is no doubt that new tools would facilitate the elimination process and the sustainability of results; thus, funding efforts for HAT control and research must continue based on public health objectives, and no longer on the burden of the disease.
                Bookmark

                Author and article information

                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                April 2014
                24 April 2014
                : 8
                : 4
                : e2624
                Affiliations
                [1 ]Yale School of Public Health, Department of Epidemiology and Public Health, New Haven, Connecticut, United States of America
                [2 ]The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus Hinxton, United Kingdom
                [3 ]South African National Bioinformatics Institute, MRC Bioinformatics Unit, University of the Western Cape, Bellville, South Africa
                [4 ]Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
                [5 ]Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
                [6 ]Vector, Environment and Society Unit, Tropical Diseases Research (TDR), World Health Organization, Geneva, Switzerland
                Author notes

                The authors have declared that no competing interests exist. SA is EIC of PLOS Neglected Tropical Diseases.

                Article
                PNTD-D-13-01374
                10.1371/journal.pntd.0002624
                3998789
                24762859
                5179be12-d4fa-4cb5-8607-d4b498d54a18
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                Page count
                Pages: 3
                Funding
                No specific funding was received for this article.
                Categories
                Editorial
                Biology and Life Sciences
                Genetics
                Microbiology
                Veterinary Science
                Veterinary Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article