40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mycobacterium tuberculosis Responds to Chloride and pH as Synergistic Cues to the Immune Status of its Host Cell

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability of Mycobacterium tuberculosis (Mtb) to thrive in its phagosomal niche is critical for its establishment of a chronic infection. This requires that Mtb senses and responds to intraphagosomal signals such as pH. We hypothesized that Mtb would respond to additional intraphagosomal factors that correlate with maturation. Here, we demonstrate that [Cl ] and pH correlate inversely with phagosome maturation, and identify Cl as a novel environmental cue for Mtb. Mtb responds to Cl and pH synergistically, in part through the activity of the two-component regulator phoPR. Following identification of promoters responsive to Cl and pH, we generated a reporter Mtb strain that detected immune-mediated changes in the phagosomal environment during infection in a mouse model. Our study establishes Cl and pH as linked environmental cues for Mtb, and illustrates the utility of reporter bacterial strains for the study of Mtb-host interactions in vivo.

          Author Summary

          Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, a disease that remains a major global health problem. To ensure its long-term survival in the host, Mtb must be able to sense and respond to changes in its immediate environment, such as the pH differences that occur in the phagosome in which it lives. Knowledge of the external signals that Mtb recognizes during infection is critical for understanding the impact of the microenvironment on Mtb pathogenesis and persistence, and how Mtb interacts with its host cell. We show here that [Cl ] correlates inversely with pH as the phagosome matures, and identify [Cl ] as a novel cue that Mtb responds to, in synergism with pH. By constructing a Mtb strain that fluorescently reports on changes in [Cl ] and pH, we find using a mouse model of infection that environmental alterations in Mtb's phagosomal home are mediated at the local level by activities of the host immune system. Our study demonstrates how a pathogen can exploit linked environmental cues during infection, and shows the value of reporter bacterial strains for Mtb-host whole animal studies.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic requirements for mycobacterial survival during infection.

          Despite the importance of tuberculosis as a public health problem, we know relatively little about the molecular mechanisms used by the causative organism, Mycobacterium tuberculosis, to persist in the host. To define these mechanisms, we have mutated virtually every nonessential gene of M. tuberculosis and determined the effect disrupting each gene on the growth rate of this pathogen during infection. A total of 194 genes that are specifically required for mycobacterial growth in vivo were identified. The behavior of these mutants provides a detailed view of the changing environment that the bacterium encounters as infection proceeds. A surprisingly large fraction of these genes are unique to mycobacteria and closely related species, indicating that many of the strategies used by this unusual group of organisms are fundamentally different from other pathogens
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disseminated tuberculosis in interferon gamma gene-disrupted mice

            The expression of protective immunity to Mycobacterium tuberculosis in mice is mediated by T lymphocytes that secrete cytokines. These molecules then mediate a variety of roles, including the activation of parasitized host macrophages, and the recruitment of other mononuclear phagocytes to the site of the infection in order to initiate granuloma formation. Among these cytokines, interferon gamma (IFN-gamma) is believed to play a key role is these events. In confirmation of this hypothesis, we show in this study that mice in which the IFN-gamma gene has been disrupted were unable to contain or control a normally sublethal dose of M. tuberculosis, delivered either intravenously or aerogenically. In such mice, a progressive and widespread tissue destruction and necrosis, associated with very high numbers of acid- fast bacilli, was observed. In contrast, despite the lack of protective immunity, some DTH-like reactivity could still be elicited. These data, therefore, indicate that although IFN-gamma may not be needed for DTH expression, it plays a pivotal and essential role in protective cellular immunity to tuberculosis infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FACS-optimized mutants of the green fluorescent protein (GFP).

              We have constructed a library in Escherichia coli of mutant gfp genes (encoding green fluorescent protein, GFP) expressed from a tightly regulated inducible promoter. We introduced random amino acid (aa) substitutions in the twenty aa flanking the chromophore Ser-Tyr-Gly sequence at aa 65-67. We then used fluorescence-activated cell sorting (FACS) to select variants of GFP that fluoresce between 20-and 35-fold more intensely than wild type (wt), when excited at 488 nm. Sequence analysis reveals three classes of aa substitutions in GFP. All three classes of mutant proteins have highly shifted excitation maxima. In addition, when produced in E. coli, the folding of the mutant proteins is more efficient than folding of wt GFP. These two properties contribute to a greatly increased (100-fold) fluorescence intensity, making the mutants useful for a number of applications.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                April 2013
                April 2013
                4 April 2013
                : 9
                : 4
                : e1003282
                Affiliations
                [1 ]Cornell University, College of Veterinary Medicine, Department of Microbiology and Immunology, Ithaca, New York, United States of America
                [2 ]Infectious Disease Research Institute, and Department of Global Health, University of Washington School of Medicine, Seattle, Washington United States of America
                Johns Hopkins School of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ST NS RBA DGR. Performed the experiments: ST NS. Analyzed the data: ST NS. Contributed reagents/materials/analysis tools: TP RBA. Wrote the paper: ST DGR.

                [¤]

                Current address: Michigan State University, Department of Microbiology and Molecular Genetics, East Lansing, Michigan, United States of America.

                Article
                PPATHOGENS-D-12-02606
                10.1371/journal.ppat.1003282
                3616970
                23592993
                518a9950-5683-451a-a290-398f7906589d
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 October 2012
                : 15 February 2013
                Page count
                Pages: 12
                Funding
                This work was supported by a NIAID-NRSA fellowship (F32AI081482) to RBA, by an award (42786) to the Imaging TB consortium (TP) from the Bill & Melinda Gates Foundation TB Drug Accelerator Program and by US Public Health Services grants AI067027, and HL055936 from the National Institutes of Health to DGR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Immunopathology
                Microbiology
                Host-Pathogen Interaction
                Medical Microbiology
                Microbial Physiology
                Molecular Cell Biology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article