13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Multilayered signaling pathways for pollen tube growth and guidance

      , ,
      Plant Reproduction
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells.

          For more than 140 years, pollen tube guidance in flowering plants has been thought to be mediated by chemoattractants derived from target ovules. However, there has been no convincing evidence of any particular molecule being the true attractant that actually controls the navigation of pollen tubes towards ovules. Emerging data indicate that two synergid cells on the side of the egg cell emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen tube guidance. Here we report that secreted, cysteine-rich polypeptides (CRPs) in a subgroup of defensin-like proteins are attractants derived from the synergid cells. We isolated synergid cells of Torenia fournieri, a unique plant with a protruding embryo sac, to identify transcripts encoding secreted proteins as candidate molecules for the chemoattractant(s). We found two CRPs, abundantly and predominantly expressed in the synergid cell, which are secreted to the surface of the egg apparatus. Moreover, they showed activity in vitro to attract competent pollen tubes of their own species and were named as LUREs. Injection of morpholino antisense oligomers against the LUREs impaired pollen tube attraction, supporting the finding that LUREs are the attractants derived from the synergid cells of T. fournieri.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis.

            Pattern-recognition receptors (PRRs) trigger innate immune responses in animals and plants. One such PRR is the flagellin receptor FLS2 in Arabidopsis. Here, we demonstrate that a functional fusion of FLS2 to the green fluorescent protein (GFP) resides in cell membranes of most tissues. Stimulation with the flagellin epitope flg22 induces its transfer into intracellular mobile vesicles, followed by degradation. FLS2 internalization depends on cytoskeleton and proteasome functions, and receptor activation. A variant FLS2 mutated in Thr 867, a potential phosphorylation site, binds flg22 normally, but is impaired in flg22 responses and FLS2 endocytosis. We propose that plant cells regulate pathogen-associated molecular pattern (PAMP)-mediated PRR activities by subcellular compartmentalization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels.

              During angiosperm reproduction, pollen grains form a tube that navigates through female tissues to the micropyle, delivering sperm to the egg; the signals that mediate this process are poorly understood. Here, we describe a role for gamma-amino butyric acid (GABA) in pollen tube growth and guidance. In vitro, GABA stimulates pollen tube growth, although vast excesses are inhibitory. The Arabidopsis POP2 gene encodes a transaminase that degrades GABA and contributes to the formation of a gradient leading up to the micropyle. pop2 flowers accumulate GABA, and the growth of many pop2 pollen tubes is arrested, consistent with their in vitro GABA hypersensitivity. Some pop2 tubes continue to grow toward ovules, yet they are misguided, presumably because they target ectopic GABA on the ovule surface. Interestingly, wild-type tubes exhibit normal growth and guidance in pop2 pistils, perhaps by degrading excess GABA and sharpening the gradient leading to the micropyle.
                Bookmark

                Author and article information

                Journal
                Plant Reproduction
                Plant Reprod
                Springer Nature
                2194-7953
                2194-7961
                March 2018
                February 13 2018
                March 2018
                : 31
                : 1
                : 31-41
                Article
                10.1007/s00497-018-0324-7
                5191fdfe-57a5-45d2-94bf-50fcfe817e04
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article