28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toll-Like Receptor 8 Ligands Activate a Vitamin D Mediated Autophagic Response that Inhibits Human Immunodeficiency Virus Type 1

      research-article
      1 , 1 , 2 , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Toll-like receptors (TLR) are important in recognizing microbial pathogens and triggering host innate immune responses, including autophagy, and in the mediation of immune activation during human immunodeficiency virus type-1 (HIV) infection. We report here that TLR8 activation in human macrophages induces the expression of the human cathelicidin microbial peptide (CAMP), the vitamin D receptor (VDR) and cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1), which 1 α-hydroxylates the inactive form of vitamin D, 25-hydroxycholecalciferol, into its biologically active metabolite. Moreover, we demonstrate using RNA interference, chemical inhibitors and vitamin D deficient media that TLR8 agonists inhibit HIV through a vitamin D and CAMP dependent autophagic mechanism. These data support an important role for vitamin D in the control of HIV infection, and provide a biological explanation for the benefits of vitamin D. These findings also provide new insights into potential novel targets to prevent and treat HIV infection.

          Author Summary

          Cells use macroautophagy (autophagy - ‘ self-eating’, lysosome-dependent degradation and recycling of intracellular components in response to stress) as a mechanism to detect intracellular pathogens through pattern-recognition receptors such as Toll-like receptors (TLRs) that recognize signature molecules of pathogens that are essential for their survival. One such Toll-like receptor, TLR8, which is located in human macrophage endosomes, recognizes both imidazoquinoline compounds and uridine-rich single-stranded RNA such as human immunodeficiency virus type-1 (HIV) single-stranded RNA. In the present study we report that TLR8 activation in human macrophages induces the expression of the human cathelicidin microbial peptide (CAMP), the vitamin D receptor (VDR), and cytochrome P450, family 27, subfamily B, polypeptide 1 (CYP27B1), which 1 α-hydroxylates the inactive form of vitamin D, 25-hydroxycholecalciferol, into its biologically active metabolite. Moreover, we demonstrate that TLR8 activation induces autophagy in human macrophages through a vitamin D and CAMP dependent mechanism, and that the induction of autophagy by TLR8 agonists inhibits HIV. These data support an important role for vitamin D in the control of HIV infection, and provide a biological explanation for the benefits of vitamin D. These findings also provide new insights into potential novel targets to prevent and treat HIV infection.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Dissection of Autophagosome Formation Using Apg5-Deficient Mouse Embryonic Stem Cells

          In macroautophagy, cytoplasmic components are delivered to lysosomes for degradation via autophagosomes that are formed by closure of cup-shaped isolation membranes. However, how the isolation membranes are formed is poorly understood. We recently found in yeast that a novel ubiquitin-like system, the Apg12-Apg5 conjugation system, is essential for autophagy. Here we show that mouse Apg12-Apg5 conjugate localizes to the isolation membranes in mouse embryonic stem cells. Using green fluorescent protein–tagged Apg5, we revealed that the cup-shaped isolation membrane is developed from a small crescent-shaped compartment. Apg5 localizes on the isolation membrane throughout its elongation process. To examine the role of Apg5, we generated Apg5-deficient embryonic stem cells, which showed defects in autophagosome formation. The covalent modification of Apg5 with Apg12 is not required for its membrane targeting, but is essential for involvement of Apg5 in elongation of the isolation membranes. We also show that Apg12-Apg5 is required for targeting of a mammalian Aut7/Apg8 homologue, LC3, to the isolation membranes. These results suggest that the Apg12-Apg5 conjugate plays essential roles in isolation membrane development.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4.

              HIV-1 envelope glycoproteins (Env), expressed at the cell surface, induce apoptosis of uninfected CD4+ T cells, contributing to the development of AIDS. Here we demonstrate that, independently of HIV replication, transfected or HIV-infected cells that express Env induced autophagy and accumulation of Beclin 1 in uninfected CD4+ T lymphocytes via CXCR4. The same phenomena occurred in a T cell line and in transfected HEK.293 cells that expressed both wild-type CXCR4 and a truncated form of CD4 that is unable to bind the lymphocyte-specific protein kinase Lck. Env-mediated autophagy is required to trigger CD4+ T cell apoptosis since blockade of autophagy at different steps, by either drugs (3-methyladenine and bafilomycin A1) or siRNAs specific for Beclin 1/Atg6 and Atg7 genes, totally inhibited the apoptotic process. Furthermore, CD4+ T cells still underwent Env-mediated cell death with autophagic features when apoptosis was inhibited. These results suggest that HIV-infected cells can induce autophagy in bystander CD4+ T lymphocytes through contact of Env with CXCR4, leading to apoptotic cell death, a mechanism most likely contributing to immunodeficiency.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2012
                November 2012
                15 November 2012
                : 8
                : 11
                : e1003017
                Affiliations
                [1 ]Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California, United States of America
                [2 ]Rady Children's Hospital, San Diego, California, United States of America
                National Institutes of Health, National Institute of Allergy and Infectious Diseases, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GRC SAS. Performed the experiments: GRC. Analyzed the data: GRC SAS. Contributed reagents/materials/analysis tools: SAS. Wrote the paper: GRC SAS.

                Article
                PPATHOGENS-D-12-01492
                10.1371/journal.ppat.1003017
                3499571
                23166493
                526eaa0f-68c4-4608-aa9a-68b11d4c4555
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 June 2012
                : 18 September 2012
                Page count
                Pages: 11
                Funding
                This work was supported by the NIAID, NIH (grant AI084573) and the International Maternal Perinatal Adolescent AIDS Clinical Trials (IMPAACT) Network. Overall support for the International Maternal Pediatric Adolescent AIDS Clinical Trials Group (IMPAACT) was provided by the National Institute of Allergy and Infectious Diseases (NIAID) [U01 AI068632], the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), and the National Institute of Mental Health (NIMH) [AI068632]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This work was supported by the Statistical and Data Analysis Center at Harvard School of Public Health, under the National Institute of Allergy and Infectious Diseases cooperative agreement #5 U01 AI41110 with the Pediatric AIDS Clinical Trials Group (PACTG) and U01 AI068616 with the IMPAACT Group. Support of the sites was provided by the National Institute of Allergy and Infectious Diseases (NIAID) and the NICHD International and Domestic Pediatric and Maternal HIV Clinical Trials Network funded by NICHD (contract number N01-DK-9-001/HHSN267200800001C). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Immunity
                Innate Immunity
                Virology
                Immunodeficiency Viruses
                Medical Microbiology
                Microbial Pathogens
                Pathogenesis
                Molecular Cell Biology
                Cellular Stress Responses
                Medicine
                Infectious Diseases
                Viral Diseases
                HIV

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article