30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced Anti-Tumor Effect of Zoledronic Acid Combined with Temozolomide against Human Malignant Glioma Cell Expressing O 6-Methylguanine DNA Methyltransferase

      research-article
      1 , 2 , * , 2 , 1
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Temozolomide (TMZ), a DNA methylating agent, is widely used in the adjuvant treatment of malignant gliomas. O 6-methylguanine-DNA methyltranferase (MGMT), a DNA repair enzyme, is frequently discussed as the main factor that limits the efficacy of TMZ. Zoledronic acid (ZOL), which is clinically applied to treat cancer-induced bone diseases, appears to possess direct anti-tumor activity through apoptosis induction by inhibiting mevalonate pathway and prenylation of intracellular small G proteins. In this study, we evaluated whether ZOL can be effectively used as an adjuvant to TMZ in human malignant glioma cells that express MGMT. Malignant glioma cell lines, in which the expression of MGMT was detected, did not exhibit growth inhibition by TMZ even at a longer exposure. However, combination experiment of TMZ plus ZOL revealed that a supra-additive effect resulted in a significant decrease in cell growth. In combined TMZ/ZOL treatment, an increased apoptotic rate was apparent and significant activation of caspase-3 and cleavage of poly-(ADP-ribose) polymerase were observed compared with each single drug exposure. There were decreased amounts of Ras-GTP, MAPK and Akt phosphorylation and MGMT expression in the ZOL-treated cells. Subcutanous xenograft models showed significant decrease of tumor growth with combined TMZ/ZOL treatment. These results suggest that ZOL efficaciously inhibits activity of Ras in malignant glioma cells and potentiates TMZ-mediated cytotoxicity, inducing growth inhibition and apoptosis of malignant glioma cells that express MGMT and resistant to TMZ. Based on this work, combination of TMZ with ZOL might be a potential therapy in malignant gliomas that receive less therapeutic effects of TMZ due to cell resistance.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity.

          Resistance to alkylating agents via direct DNA repair by O(6)-methylguanine methyltransferase (MGMT) remains a significant barrier to the successful treatment of patients with malignant glioma. The relative expression of MGMT in the tumor may determine response to alkylating agents, and epigenetic silencing of the MGMT gene by promoter methylation plays an important role in regulating MGMT expression in gliomas. MGMT promoter methylation is correlated with improved progression-free and overall survival in patients treated with alkylating agents. Strategies to overcome MGMT-mediated chemoresistance are being actively investigated. These include treatment with nontoxic pseudosubstrate inhibitors of MGMT, such as O(6)-benzylguanine, or RNA interference-mediated gene silencing of MGMT. However, systemic application of MGMT inhibitors is limited by an increase in hematologic toxicity. Another strategy is to deplete MGMT activity in tumor tissue using a dose-dense temozolomide schedule. These alternative schedules are well tolerated; however, it remains unclear whether they are more effective than the standard dosing regimen or whether they effectively deplete MGMT activity in tumor tissue. Of note, not all patients with glioblastoma having MGMT promoter methylation respond to alkylating agents, and even those who respond will inevitably experience relapse. Herein we review the data supporting MGMT as a major mechanism of chemotherapy resistance in malignant gliomas and describe ongoing studies that are testing resistance-modulating strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant.

            We have studied the apoptotic response of poly(ADP-ribose) polymerase (PARP)-/- cells to different inducers and the consequences of the expression of an uncleavable mutant of PARP on the apoptotic process. The absence of PARP drastically increases the sensitivity of primary bone marrow PARP-/- cells to apoptosis induced by an alkylating agent but not by a topoisomerase I inhibitor CPT-11 or by interleukin-3 removal. cDNA of wild type or of an uncleavable PARP mutant (D214A-PARP) has been introduced into PARP-/- fibroblasts, which were exposed to anti-CD95 or an alkylating agent to induce apoptosis. The expression of D214A-PARP results in a significant delay of cell death upon CD95 stimulation. Morphological analysis shows a retarded cell shrinkage and nuclear condensation. Upon treatment with an alkylating agent, expression of wild-type PARP cDNA into PARP-deficient mouse embryonic fibroblasts results in the restoration of the cell viability, and the D214A-PARP mutant had no further effect on cell recovery. In conclusion, PARP-/- cells are extremely sensitive to apoptosis induced by triggers (like alkylating agents), which activates the base excision repair pathway of DNA, and the cleavage of PARP during apoptosis facilitates cellular disassembly and ensures the completion and irreversibility of the process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine.

              Methylating drugs such as temozolomide (TMZ) are widely used in the treatment of brain tumours (malignant gliomas). The mechanism of TMZ-induced glioma cell death is unknown. Here, we show that malignant glioma cells undergo apoptosis following treatment with the methylating agents N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and TMZ. Cell death determined by colony formation and apoptosis following methylation is greatly stimulated by p53. Transfection experiments with O(6)-methylguanine-DNA methyltransferase (MGMT) and depletion of MGMT by O(6)-benzylguanine showed that, in gliomas, the apoptotic signal originates from O(6)-methylguanine (O(6)MeG) and that repair of O(6)MeG by MGMT prevents apoptosis. We further demonstrate that O(6)MeG-triggered apoptosis requires Fas/CD95/Apo-1 receptor activation in p53 non-mutated glioma cells, whereas in p53 mutated gliomas the same DNA lesion triggers the mitochondrial apoptotic pathway. This occurs less effectively via Bcl-2 degradation and caspase-9, -2, -7 and -3 activation. O(6)MeG-triggered apoptosis in gliomas is a late response (occurring >120 h after treatment) that requires extensive cell proliferation. Stimulation of cell cycle progression by the Pasteurella multocida toxin promoted apoptosis whereas serum starvation attenuated it. O(6)MeG-induced apoptosis in glioma cells was preceded by the formation of DNA double-strand breaks (DSBs), as measured by gammaH2AX formation. Glioma cells mutated in DNA-PK(cs), which is involved in non-homologous end-joining, were more sensitive to TMZ-induced apoptosis, supporting the involvement of DSBs as a downstream apoptosis triggering lesion. Overall, the data demonstrate that cell death induced by TMZ in gliomas is due to apoptosis and that determinants of sensitivity of gliomas to TMZ are MGMT, p53, proliferation rate and DSB repair.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                11 August 2014
                : 9
                : 8
                : e104538
                Affiliations
                [1 ]Department of Neurological Surgery, Wakayama Medical University School of Medicine, Wakayama, Japan
                [2 ]Shien-Lab, National Cancer Center Hospital, Tokyo, Japan
                University of Pittsburgh, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JF. Performed the experiments: JF. Analyzed the data: JF. Contributed reagents/materials/analysis tools: JF. Contributed to the writing of the manuscript: JF. Directed the study: FK NN.

                Article
                PONE-D-14-12527
                10.1371/journal.pone.0104538
                4128678
                25111384
                52d4c233-de93-49a1-8c7d-774920355eec
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 March 2014
                : 14 July 2014
                Page count
                Pages: 13
                Funding
                Funding provided by Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology and Japan Society for the Promotion of Science (23700424) ( http://www.e-rad.go.jp) (JF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Neurology
                Neurological Tumors
                Glioblastoma Multiforme
                Glioma
                Oncology
                Cancers and Neoplasms
                Pharmaceutics
                Drug Therapy
                Cancer Therapy
                Chemotherapy
                Combination Chemotherapy
                Research and Analysis Methods
                Biological Cultures
                Cell Cultures
                Cultured Tumor Cells
                Glioblastoma Cells
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article