32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Possible Mechanism of Advanced Glycation End Products (AGEs) for Alzheimer’s Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amyloid precursor protein (APP) has been modified by β and γ-secretase that cause amyloid deposits (plaques) in neuronal cells. Glyceraldhyde-derived AGEs has been identified as a major source of neurotoxicity in Alzheimer’s disease (AD). In a previous study, we demonstrated that glyceraldehyde-derived AGEs increase APP and Aβ via ROS. Furthermore, the combination of AGEs and Aβ has been shown to enhance neurotoxicity. In mice, APP expression is increased by tail vein injection of AGEs. This evidence suggests a correlation between AGEs and the development of AD. However, the role played by AGEs in the pathogenesis of AD remains unclear. In this report, we demonstrate that AGEs up-regulate APP processing protein (BACE and PS1) and Sirt1 expression via ROS, but do not affect the expression of downstream antioxidant genes HO-1 and NQO-1. Moreover, we found that AGEs increase GRP78 expression and enhance the cell death-related pathway p53, bcl-2/bax ratio, caspase 3. These results indicate that AGEs impair the neuroprotective effects of Sirt1 and lead to neuronal cell death via ER stress. Our findings suggest that AGEs increase ROS production, which stimulates downstream pathways related to APP processing, Aβ production, Sirt1, and GRP78, resulting in the up-regulation of cell death related pathway. This in-turn enhances neuronal cell death, which leads to the development of AD.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis.

          A progressive loss of neurons with age underlies a variety of debilitating neurological disorders, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), yet few effective treatments are currently available. The SIR2 gene promotes longevity in a variety of organisms and may underlie the health benefits of caloric restriction, a diet that delays aging and neurodegeneration in mammals. Here, we report that a human homologue of SIR2, SIRT1, is upregulated in mouse models for AD, ALS and in primary neurons challenged with neurotoxic insults. In cell-based models for AD/tauopathies and ALS, SIRT1 and resveratrol, a SIRT1-activating molecule, both promote neuronal survival. In the inducible p25 transgenic mouse, a model of AD and tauopathies, resveratrol reduced neurodegeneration in the hippocampus, prevented learning impairment, and decreased the acetylation of the known SIRT1 substrates PGC-1alpha and p53. Furthermore, injection of SIRT1 lentivirus in the hippocampus of p25 transgenic mice conferred significant protection against neurodegeneration. Thus, SIRT1 constitutes a unique molecular link between aging and human neurodegenerative disorders and provides a promising avenue for therapeutic intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides.

            Several epidemiological studies indicate that moderate consumption of wine is associated with a lower incidence of Alzheimer's disease. Wine is enriched in antioxidant compounds with potential neuroprotective activities. However, the exact molecular mechanisms involved in the beneficial effects of wine intake on the neurodegenerative process in Alzheimer's disease brain remain to be clearly defined. Here we show that resveratrol (trans-3,4',5-trihydroxystilbene), a naturally occurring polyphenol mainly found in grapes and red wine, markedly lowers the levels of secreted and intracellular amyloid-beta (Abeta) peptides produced from different cell lines. Resveratrol does not inhibit Abeta production, because it has no effect on the Abeta-producing enzymes beta- and gamma-secretases, but promotes instead intracellular degradation of Abeta via a mechanism that involves the proteasome. Indeed, the resveratrol-induced decrease of Abeta could be prevented by several selective proteasome inhibitors and by siRNA-directed silencing of the proteasome subunit beta5. These findings demonstrate a proteasome-dependent anti-amyloidogenic activity of resveratrol and suggest that this natural compound has a therapeutic potential in Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction.

              Nicotinamide adenine dinucleotide (NAD)+-dependent sirtuins have been identified to be key regulators in the lifespan extending effects of calorie restriction (CR) in a number of species. In this study we report for the first time that promotion of the NAD+-dependent sirtuin, SIRT1-mediated deacetylase activity, may be a mechanism by which CR influences Alzheimer disease (AD)-type amyloid neuropathology. Most importantly, we report that the predicted attenuation of beta-amyloid content in the brain during CR can be reproduced in mouse neurons in vitro by manipulating cellular SIRT1 expression/activity through mechanisms involving the regulation of the serine/threonine Rho kinase ROCK1, known in part for its role in the inhibition of the non-amyloidogenic alpha-secretase processing of the amyloid precursor protein. Conversely, we found that the expression of constitutively active ROCK1 in vitro cultures significantly prevented SIRT1-mediated response, suggesting that alpha-secretase activity is required for SIRT1-mediated prevention of AD-type amyloid neuropathology. Consistently we found that the expression of exogenous human (h) SIRT1 in the brain of hSIRT1 transgenics also resulted in decreased ROCK1 expression and elevated alpha-secretase activity in vivo. These results demonstrate for the first time a role for SIRT1 activation in the brain as a novel mechanism through which CR may influence AD amyloid neuropathology. The study provides a potentially novel pharmacological strategy for AD prevention and/or treatment.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                20 November 2015
                2015
                : 10
                : 11
                : e0143345
                Affiliations
                [1 ]Graduate Institute of Medical Sciences, Collage of Health Science, Chang Jung Christian University, Tainan, Taiwan
                [2 ]Innovate Research Center of Medicine, Chang Jung Christian University, Tainan, Taiwan
                [3 ]Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
                [4 ]Department of Bioscience Technology, Collage of Health Science, Chang Jung Christian University, Tainan, Taiwan
                [5 ]Department of Dental Hygiene, China Medical University, Taichung, Taiwan
                University of S. Florida College of Medicine, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SYK. Performed the experiments: KHC SSC. Analyzed the data: SYK HAK. Contributed reagents/materials/analysis tools: SYK TMS TCC HIC WCC. Wrote the paper: SYK HAK.

                Article
                PONE-D-15-35048
                10.1371/journal.pone.0143345
                4654523
                26587989
                52dcfc39-da56-4aaa-a6b2-22dce3ca4221
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 10 August 2015
                : 3 November 2015
                Page count
                Figures: 8, Tables: 0, Pages: 16
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article