17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      The fetus at the tipping point: modifying the outcome of fetal asphyxia : Modulating fetal asphyxia

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d284862e144">Brain injury around birth is associated with nearly half of all cases of cerebral palsy. Although brain injury is multifactorial, particularly after preterm birth, acute hypoxia-ischaemia is a major contributor to injury. It is now well established that the severity of injury after hypoxia-ischaemia is determined by a dynamic balance between injurious and protective processes. In addition, mothers who are at risk of premature delivery have high rates of diabetes and antepartum infection/inflammation and are almost universally given treatments such as antenatal glucocorticoids and magnesium sulphate to reduce the risk of death and complications after preterm birth. We review evidence that these common factors affect responses to fetal asphyxia, often in unexpected ways. For example, glucocorticoid exposure dramatically increases delayed cell loss after acute hypoxia-ischaemia, largely through secondary hyperglycaemia. This critical new information is important to understand the effects of clinical treatments of women whose fetuses are at risk of perinatal asphyxia. </p>

          Related collections

          Most cited references247

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015

          Background Non-fatal outcomes of disease and injury increasingly detract from the ability of the world's population to live in full health, a trend largely attributable to an epidemiological transition in many countries from causes affecting children, to non-communicable diseases (NCDs) more common in adults. For the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015), we estimated the incidence, prevalence, and years lived with disability for diseases and injuries at the global, regional, and national scale over the period of 1990 to 2015. Methods We estimated incidence and prevalence by age, sex, cause, year, and geography with a wide range of updated and standardised analytical procedures. Improvements from GBD 2013 included the addition of new data sources, updates to literature reviews for 85 causes, and the identification and inclusion of additional studies published up to November, 2015, to expand the database used for estimation of non-fatal outcomes to 60 900 unique data sources. Prevalence and incidence by cause and sequelae were determined with DisMod-MR 2.1, an improved version of the DisMod-MR Bayesian meta-regression tool first developed for GBD 2010 and GBD 2013. For some causes, we used alternative modelling strategies where the complexity of the disease was not suited to DisMod-MR 2.1 or where incidence and prevalence needed to be determined from other data. For GBD 2015 we created a summary indicator that combines measures of income per capita, educational attainment, and fertility (the Socio-demographic Index [SDI]) and used it to compare observed patterns of health loss to the expected pattern for countries or locations with similar SDI scores. Findings We generated 9·3 billion estimates from the various combinations of prevalence, incidence, and YLDs for causes, sequelae, and impairments by age, sex, geography, and year. In 2015, two causes had acute incidences in excess of 1 billion: upper respiratory infections (17·2 billion, 95% uncertainty interval [UI] 15·4–19·2 billion) and diarrhoeal diseases (2·39 billion, 2·30–2·50 billion). Eight causes of chronic disease and injury each affected more than 10% of the world's population in 2015: permanent caries, tension-type headache, iron-deficiency anaemia, age-related and other hearing loss, migraine, genital herpes, refraction and accommodation disorders, and ascariasis. The impairment that affected the greatest number of people in 2015 was anaemia, with 2·36 billion (2·35–2·37 billion) individuals affected. The second and third leading impairments by number of individuals affected were hearing loss and vision loss, respectively. Between 2005 and 2015, there was little change in the leading causes of years lived with disability (YLDs) on a global basis. NCDs accounted for 18 of the leading 20 causes of age-standardised YLDs on a global scale. Where rates were decreasing, the rate of decrease for YLDs was slower than that of years of life lost (YLLs) for nearly every cause included in our analysis. For low SDI geographies, Group 1 causes typically accounted for 20–30% of total disability, largely attributable to nutritional deficiencies, malaria, neglected tropical diseases, HIV/AIDS, and tuberculosis. Lower back and neck pain was the leading global cause of disability in 2015 in most countries. The leading cause was sense organ disorders in 22 countries in Asia and Africa and one in central Latin America; diabetes in four countries in Oceania; HIV/AIDS in three southern sub-Saharan African countries; collective violence and legal intervention in two north African and Middle Eastern countries; iron-deficiency anaemia in Somalia and Venezuela; depression in Uganda; onchoceriasis in Liberia; and other neglected tropical diseases in the Democratic Republic of the Congo. Interpretation Ageing of the world's population is increasing the number of people living with sequelae of diseases and injuries. Shifts in the epidemiological profile driven by socioeconomic change also contribute to the continued increase in years lived with disability (YLDs) as well as the rate of increase in YLDs. Despite limitations imposed by gaps in data availability and the variable quality of the data available, the standardised and comprehensive approach of the GBD study provides opportunities to examine broad trends, compare those trends between countries or subnational geographies, benchmark against locations at similar stages of development, and gauge the strength or weakness of the estimates available. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis.

            Trend data for causes of child death are crucial to inform priorities for improving child survival by and beyond 2015. We report child mortality by cause estimates in 2000-13, and cause-specific mortality scenarios to 2030 and 2035. We estimated the distributions of causes of child mortality separately for neonates and children aged 1-59 months. To generate cause-specific mortality fractions, we included new vital registration and verbal autopsy data. We used vital registration data in countries with adequate registration systems. We applied vital registration-based multicause models for countries with low under-5 mortality but inadequate vital registration, and updated verbal autopsy-based multicause models for high mortality countries. We used updated numbers of child deaths to derive numbers of deaths by causes. We applied two scenarios to derive cause-specific mortality in 2030 and 2035. Of the 6·3 million children who died before age 5 years in 2013, 51·8% (3·257 million) died of infectious causes and 44% (2·761 million) died in the neonatal period. The three leading causes are preterm birth complications (0·965 million [15·4%, uncertainty range (UR) 9·8-24·5]; UR 0·615-1·537 million), pneumonia (0·935 million [14·9%, 13·0-16·8]; 0·817-1·057 million), and intrapartum-related complications (0·662 million [10·5%, 6·7-16·8]; 0·421-1·054 million). Reductions in pneumonia, diarrhoea, and measles collectively were responsible for half of the 3·6 million fewer deaths recorded in 2013 versus 2000. Causes with the slowest progress were congenital, preterm, neonatal sepsis, injury, and other causes. If present trends continue, 4·4 million children younger than 5 years will still die in 2030. Furthermore, sub-Saharan Africa will have 33% of the births and 60% of the deaths in 2030, compared with 25% and 50% in 2013, respectively. Our projection results provide concrete examples of how the distribution of child causes of deaths could look in 15-20 years to inform priority setting in the post-2015 era. More evidence is needed about shifts in timing, causes, and places of under-5 deaths to inform child survival agendas by and beyond 2015, to end preventable child deaths in a generation, and to count and account for every newborn and every child. Bill & Melinda Gates Foundation. Copyright © 2015 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extrapineal melatonin: sources, regulation, and potential functions.

              Endogenous melatonin is synthesized from tryptophan via 5-hydroxytryptamine. It is considered an indoleamine from a biochemical point of view because the melatonin molecule contains a substituted indolic ring with an amino group. The circadian production of melatonin by the pineal gland explains its chronobiotic influence on organismal activity, including the endocrine and non-endocrine rhythms. Other functions of melatonin, including its antioxidant and anti-inflammatory properties, its genomic effects, and its capacity to modulate mitochondrial homeostasis, are linked to the redox status of cells and tissues. With the aid of specific melatonin antibodies, the presence of melatonin has been detected in multiple extrapineal tissues including the brain, retina, lens, cochlea, Harderian gland, airway epithelium, skin, gastrointestinal tract, liver, kidney, thyroid, pancreas, thymus, spleen, immune system cells, carotid body, reproductive tract, and endothelial cells. In most of these tissues, the melatonin-synthesizing enzymes have been identified. Melatonin is present in essentially all biological fluids including cerebrospinal fluid, saliva, bile, synovial fluid, amniotic fluid, and breast milk. In several of these fluids, melatonin concentrations exceed those in the blood. The importance of the continual availability of melatonin at the cellular level is important for its physiological regulation of cell homeostasis, and may be relevant to its therapeutic applications. Because of this, it is essential to compile information related to its peripheral production and regulation of this ubiquitously acting indoleamine. Thus, this review emphasizes the presence of melatonin in extrapineal organs, tissues, and fluids of mammals including humans.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The Journal of Physiology
                J Physiol
                Wiley
                00223751
                December 2018
                December 2018
                June 21 2018
                : 596
                : 23
                : 5571-5592
                Affiliations
                [1 ]The Department of Physiology; University of Auckland; Auckland New Zealand
                [2 ]The Ritchie Centre; Hudson Institute of Medical Research; Melbourne Victoria Australia
                [3 ]Department of Pediatrics; University of Washington; Seattle WA USA
                [4 ]Institute for Women's Health; University College London; London UK
                Article
                10.1113/JP274949
                6265539
                29774532
                52e6ff06-a4d5-4728-91ae-d161e5b7fcc1
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article