152
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cooperative and individualistic functions of the microRNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases

      review-article
      1 , 1 , 1 ,
      Molecular Cancer
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The small RNA molecules of about 19-22 nucleotides in length, aptly called microRNAs, perform the task of gene regulation in the cell. Interestingly, till the early nineties very little was known about them but eventually, the microRNAs have become forefront in the area of research. The huge number of microRNAs plus each one of them targeting a vast number of related as well as unrelated genes makes them very interesting molecules to study. To add to the mystery of miRNAs is the fact that the same miRNA can have antagonizing role in two different cell types i.e. in one cell type; the miRNA promotes proliferation whereas in another cell type the same miRNA inhibits proliferation. Another remarkable aspect of the microRNAs is that many of them exist in clusters. In humans alone, out of 721 microRNAs known, 247 of them occur in 64 clusters at an inter-miRNA distance of less than 5000bp. The reason for this clustering of miRNAs is not fully understood but since the miRNA clusters are evolutionary conserved, their significance cannot be ruled out. The objective of this review is to summarize the recent progress on the functional characterization of miR-23a~27a~24-2 cluster in humans in relation to various health and diseased conditions and to highlight the cooperative effects of the miRNAs of this cluster.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Nuclear export of microRNA precursors.

          MicroRNAs (miRNAs), which function as regulators of gene expression in eukaryotes, are processed from larger transcripts by sequential action of nuclear and cytoplasmic ribonuclease III-like endonucleases. We show that Exportin-5 (Exp5) mediates efficient nuclear export of short miRNA precursors (pre-miRNAs) and that its depletion by RNA interference results in reduced miRNA levels. Exp5 binds correctly processed pre-miRNAs directly and specifically, in a Ran guanosine triphosphate-dependent manner, but interacts only weakly with extended pre-miRNAs that yield incorrect miRNAs when processed by Dicer in vitro. Thus, Exp5 is key to miRNA biogenesis and may help coordinate nuclear and cytoplasmic processing steps.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells.

            MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate protein expression by targeting the mRNA of protein-coding genes for either cleavage or repression of translation. The roles of miRNAs in lineage determination and proliferation as well as the location of several miRNA genes at sites of translocation breakpoints or deletions has led to the speculation that miRNAs could be important factors in the development or maintenance of the neoplastic state. Here we show that the highly malignant human brain tumor, glioblastoma, strongly over-expresses a specific miRNA, miR-21. Our studies show markedly elevated miR-21 levels in human glioblastoma tumor tissues, early-passage glioblastoma cultures, and in six established glioblastoma cell lines (A172, U87, U373, LN229, LN428, and LN308) compared with nonneoplastic fetal and adult brain tissues and compared with cultured nonneoplastic glial cells. Knockdown of miR-21 in cultured glioblastoma cells triggers activation of caspases and leads to increased apoptotic cell death. Our data suggest that aberrantly expressed miR-21 may contribute to the malignant phenotype by blocking expression of critical apoptosis-related genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis.

              While global microRNA (miRNA) expression patterns of many embryologic, physiologic, and oncogenic processes have been described, description of the role of miRNAs in ductal adenocarcinoma of the pancreas is lacking. To define the expression pattern of miRNAs in pancreatic cancer and compare it with those of normal pancreas and chronic pancreatitis. Specimens were obtained at a National Cancer Institute-designated comprehensive cancer center from patients with ductal adenocarcinoma of the pancreas (n = 65) or chronic pancreatitis (n = 42) (January 2000-December 2005). All patients underwent curative pancreatectomy; those with pancreatic cancer were chemotherapy-naive. RNA harvested from resected pancreatic cancers and matched benign adjacent pancreatic tissue as well as from chronic pancreatitis specimens was hybridized to miRNA microarrays. Identification of differentially expressed miRNAs that could differentiate pancreatic cancer from normal pancreas, chronic pancreatitis, or both, as well as a pattern of miRNA expression predictive of long-term (>24 months) survival. Significance of Analysis of Microarrays and Prediction of Analysis of Microarrays were undertaken to identify miRNAs predictive of tissue type and prognosis. P values were calculated by t test, adjusted for multiple testing. Kaplan-Meier survival curves were constructed using mean miRNA expression (high vs low) as threshold and compared by log-rank analysis. Twenty-one miRNAs with increased expression and 4 with decreased expression were identified that correctly differentiated pancreatic cancer from benign pancreatic tissue in 90% of samples by cross validation. Fifteen overexpressed and 8 underexpressed miRNAs differentiated pancreatic cancer from chronic pancreatitis with 93% accuracy. A subgroup of 6 miRNAs was able to distinguish long-term survivors with node-positive disease from those dying within 24 months. Finally, high expression of miR-196a-2 was found to predict poor survival (median, 14.3 months [95% confidence interval, 12.4-16.2] vs 26.5 months [95% confidence interval, 23.4-29.6]; P = .009). Pancreatic cancer may have a distinct miRNA expression pattern that may differentiate it from normal pancreas and chronic pancreatitis. miRNA expression patterns may be able to distinguish between long- and short-term survivors, but these findings need to be validated in other study populations.
                Bookmark

                Author and article information

                Journal
                Mol Cancer
                Molecular Cancer
                BioMed Central
                1476-4598
                2010
                3 September 2010
                : 9
                : 232
                Affiliations
                [1 ]Functional Genomics Unit, Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi-110007, India
                Article
                1476-4598-9-232
                10.1186/1476-4598-9-232
                2940846
                20815877
                53032cac-95a7-4071-b050-b95815063a1c
                Copyright ©2010 Chhabra et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 June 2010
                : 3 September 2010
                Categories
                Review

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article