0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Decoupling Relationship between Urbanization and Carbon Sequestration in the Pearl River Delta from 2000 to 2020

      , ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rapid urbanization has a significant impact on the ecological environment. Net primary productivity (NPP) can effectively reflect the growth of urban vegetation and the carbon sequestration capacity of an ecosystem. Taking the rapidly growing Pearl River Delta (PRD) as our study area, the relative contributions of human activities and climate change to NPP were analyzed using an improved two-step method based on residual trend analysis. The decoupling index was used to compare the coordinated development of socioeconomic factors and the NPP in different time periods. This study lays the foundation for formulating comprehensive and reasonable urban low-carbon development measures. The results showed that (1) NPP decreased significantly before 2010, but by 2019, NPP in most regions of the PRD showed a slight increase. The NPP of new urban land was better than that of original urban land. (2) The negative contribution of climatic factors to NPP was clearer than that of human activities, and human activities contributed positively to NPP outside urban land. (3) The decoupling status of socioeconomic factors and NPP is improving, and the degree of decoupling in 2010–2019 was higher than that in 2000–2010. In conclusion, as the first forest urban agglomeration in China, the PRD has shown a good implementation of carbon sequestration policies, which can provide a reference for the coordinated development of urbanization and carbon sequestration.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Europe-wide reduction in primary productivity caused by the heat and drought in 2003.

          Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate, their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003. We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg C yr(-1)) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europe's primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climate-driven increases in global terrestrial net primary production from 1982 to 1999.

            Recent climatic changes have enhanced plant growth in northern mid-latitudes and high latitudes. However, a comprehensive analysis of the impact of global climatic changes on vegetation productivity has not before been expressed in the context of variable limiting factors to plant growth. We present a global investigation of vegetation responses to climatic changes by analyzing 18 years (1982 to 1999) of both climatic data and satellite observations of vegetation activity. Our results indicate that global changes in climate have eased several critical climatic constraints to plant growth, such that net primary production increased 6% (3.4 petagrams of carbon over 18 years) globally. The largest increase was in tropical ecosystems. Amazon rain forests accounted for 42% of the global increase in net primary production, owing mainly to decreased cloud cover and the resulting increase in solar radiation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001

                Bookmark

                Author and article information

                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                February 2022
                January 22 2022
                : 14
                : 3
                : 526
                Article
                10.3390/rs14030526
                530dda53-759d-4b24-81c5-268baedee609
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article