20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic impairment of plasmacytoid dendritic cells ameliorates autoantibody production and symptoms of SLE in mice.

          Abstract

          Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the production of antibodies to self-nucleic acids, immune complex deposition, and tissue inflammation such as glomerulonephritis. Innate recognition of self-DNA and -RNA and the ensuing production of cytokines such as type I interferons (IFNs) contribute to SLE development. Plasmacytoid dendritic cells (pDCs) have been proposed as a source of pathogenic IFN in SLE; however, their net contribution to the disease remains unclear. We addressed this question by reducing gene dosage of the pDC-specific transcription factor E2-2 (Tcf4), which causes a specific impairment of pDC function in otherwise normal animals. We report that global or DC-specific Tcf4 haplodeficiency ameliorated SLE-like disease caused by the overexpression of the endosomal RNA sensor Tlr7. Furthermore, Tcf4 haplodeficiency in the B6. Sle1. Sle3 multigenic model of SLE nearly abolished key disease manifestations including anti-DNA antibody production and glomerulonephritis. Tcf4-haplodeficient SLE-prone animals showed a reduction of the spontaneous germinal center reaction and its associated gene expression signature. These results provide genetic evidence that pDCs are critically involved in SLE pathogenesis and autoantibody production, confirming their potential utility as therapeutic targets in the disease.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus.

          Systemic lupus erythematosus (SLE) is a complex, inflammatory autoimmune disease that affects multiple organ systems. We used global gene expression profiling of peripheral blood mononuclear cells to identify distinct patterns of gene expression that distinguish most SLE patients from healthy controls. Strikingly, about half of the patients studied showed dysregulated expression of genes in the IFN pathway. Furthermore, this IFN gene expression "signature" served as a marker for more severe disease involving the kidneys, hematopoetic cells, and/or the central nervous system. These results provide insights into the genetic pathways underlying SLE, and identify a subgroup of patients who may benefit from therapies targeting the IFN pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Notch–RBP-J signaling controls the homeostasis of CD8− dendritic cells in the spleen

            Signaling through Notch receptors and their transcriptional effector RBP-J is essential for lymphocyte development and function, whereas its role in other immune cell types is unclear. We tested the function of the canonical Notch–RBP-J pathway in dendritic cell (DC) development and maintenance in vivo. Genetic inactivation of RBP-J in the bone marrow did not preclude DC lineage commitment but caused the reduction of splenic DC fraction. The inactivation of RBP-J in DCs using a novel DC-specific deleter strain caused selective loss of the splenic CD8− DC subset and reduced the frequency of cytokine-secreting CD8− DCs after challenge with Toll-like receptor ligands. In contrast, other splenic DC subsets and DCs in the lymph nodes and tissues were unaffected. The RBP-J–deficient splenic CD8− DCs were depleted at the postprogenitor stage, exhibited increased apoptosis, and lost the expression of the Notch target gene Deltex1. In the spleen, CD8− DCs were found adjacent to cells expressing the Notch ligand Delta-like 1 in the marginal zone (MZ). Thus, canonical Notch–RBP-J signaling controls the maintenance of CD8− DCs in the splenic MZ, revealing an unexpected role of the Notch pathway in the innate immune system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication.

              Antibodies against nuclear self-antigens are characteristic of systemic autoimmunity, although mechanisms promoting their generation and selection are unclear. Here, we report that B cells containing the Y-linked autoimmune accelerator (Yaa) locus are intrinsically biased toward nucleolar antigens because of increased expression of TLR7, a single-stranded RNA-binding innate immune receptor. The TLR7 gene is duplicated in Yaa mice because of a 4-Megabase expansion of the pseudoautosomal region. These results reveal high divergence in mouse Y chromosomes and represent a good example of gene copy number qualitatively altering a polygenic disease manifestation.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                22 September 2014
                : 211
                : 10
                : 1969-1976
                Affiliations
                [1 ]Department of Microbiology and Immunology and [2 ]Department of Pathology, Columbia University Medical Center, New York, NY 10032
                [3 ]Department of Medicine, University of Washington, Seattle, WA 98195
                [4 ]Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852
                Author notes
                CORRESPONDENCE B. Reizis: bvr2101@ 123456columbia.edu

                V. Sisirak and D. Ganguly contributed equally to this paper.

                D. Ganguly’s present address is Division of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India.

                K. L. Lewis’ present address is Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093.

                Article
                20132522
                10.1084/jem.20132522
                4172218
                25180061
                5319e108-24ae-436d-9455-ce5500b860c0
                © 2014 Sisirak et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 5 December 2013
                : 10 July 2014
                Categories
                Brief Definitive Report

                Medicine
                Medicine

                Comments

                Comment on this article