0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Exploring dysconnectivity of the large-scale neurocognitive network across psychiatric disorders using spatiotemporal constrained nonnegative matrix factorization method

      , , , , , ,
      Cerebral Cortex
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Psychiatric disorders usually have similar clinical and neurobiological features. Nevertheless, previous research on functional dysconnectivity has mainly focused on a single disorder and the transdiagnostic alterations in brain networks remain poorly understood. Hence, this study proposed a spatiotemporal constrained nonnegative matrix factorization (STCNMF) method based on real reference signals to extract large-scale brain networks to identify transdiagnostic changes in neurocognitive networks associated with multiple diseases. Available temporal prior information and spatial prior information were first mined from the functional magnetic resonance imaging (fMRI) data of group participants, and then these prior constraints were incorporated into the nonnegative matrix factorization objective functions to improve their efficiency. The algorithm successfully obtained 10 resting-state functional brain networks in fMRI data of schizophrenia, bipolar disorder, attention deficit/hyperactivity disorder, and healthy controls, and further found transdiagnostic changes in these large-scale networks, including enhanced connectivity between right frontoparietal network and default mode network, reduced connectivity between medial visual network and default mode network, and the presence of a few hyper-integrated network nodes. Besides, each type of psychiatric disorder had its specific connectivity characteristics. These findings provide new insights into transdiagnostic and diagnosis-specific neurobiological mechanisms for understanding multiple psychiatric disorders from the perspective of brain networks.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Complex network measures of brain connectivity: uses and interpretations.

          Brain connectivity datasets comprise networks of brain regions connected by anatomical tracts or by functional associations. Complex network analysis-a new multidisciplinary approach to the study of complex systems-aims to characterize these brain networks with a small number of neurobiologically meaningful and easily computable measures. In this article, we discuss construction of brain networks from connectivity data and describe the most commonly used network measures of structural and functional connectivity. We describe measures that variously detect functional integration and segregation, quantify centrality of individual brain regions or pathways, characterize patterns of local anatomical circuitry, and test resilience of networks to insult. We discuss the issues surrounding comparison of structural and functional network connectivity, as well as comparison of networks across subjects. Finally, we describe a Matlab toolbox (http://www.brain-connectivity-toolbox.net) accompanying this article and containing a collection of complex network measures and large-scale neuroanatomical connectivity datasets. Copyright (c) 2009 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The organization of the human cerebral cortex estimated by intrinsic functional connectivity.

            Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A default mode of brain function.

              A baseline or control state is fundamental to the understanding of most complex systems. Defining a baseline state in the human brain, arguably our most complex system, poses a particular challenge. Many suspect that left unconstrained, its activity will vary unpredictably. Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF. The OEF is defined as the ratio of oxygen used by the brain to oxygen delivered by flowing blood and is remarkably uniform in the awake but resting state (e.g., lying quietly with eyes closed). Local deviations in the OEF represent the physiological basis of signals of changes in neuronal activity obtained with functional MRI during a wide variety of human behaviors. We used quantitative metabolic and circulatory measurements from positron-emission tomography to obtain the OEF regionally throughout the brain. Areas of activation were conspicuous by their absence. All significant deviations from the mean hemisphere OEF were increases, signifying deactivations, and resided almost exclusively in the visual system. Defining the baseline state of an area in this manner attaches meaning to a group of areas that consistently exhibit decreases from this baseline, during a wide variety of goal-directed behaviors monitored with positron-emission tomography and functional MRI. These decreases suggest the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cerebral Cortex
                Oxford University Press (OUP)
                1047-3211
                1460-2199
                October 15 2022
                October 08 2022
                January 21 2022
                October 15 2022
                October 08 2022
                January 21 2022
                : 32
                : 20
                : 4576-4591
                Article
                10.1093/cercor/bhab503
                35059721
                534ecb28-8106-42c8-9910-221636c9fc7a
                © 2022

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article