18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Infectious DNAs derived from insect-specific flavivirus genomes enable identification of pre- and post-entry host restrictions in vertebrate cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Flaviviruses such as West Nile virus (WNV), dengue virus and Zika virus are mosquito-borne pathogens that cause significant human diseases. A novel group of insect-specific flaviviruses (ISFs), which only replicate in mosquitoes, have also been identified. However, little is known about the mechanisms of ISF host restriction. We report the generation of infectious cDNA from two Australian ISFs, Parramatta River virus (PaRV) and Palm Creek virus (PCV). Using circular polymerase extension cloning (CPEC) with a modified OpIE2 insect promoter, infectious cDNA was generated and transfected directly into mosquito cells to produce infectious virus indistinguishable from wild-type virus. When infectious PaRV cDNA under transcriptional control of a mammalian promoter was used to transfect mouse embryo fibroblasts, the virus failed to initiate replication even when cell entry steps were by-passed and the type I interferon response was lacking. We also used CPEC to generate viable chimeric viruses between PCV and WNV. Analysis of these hybrid viruses revealed that ISFs are also restricted from replication in vertebrate cells at the point of entry. The approaches described here to generate infectious ISF DNAs and chimeric viruses provide unique tools to further dissect the mechanisms of their host restriction.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Circular Polymerase Extension Cloning of Complex Gene Libraries and Pathways

          High-throughput genomics and the emerging field of synthetic biology demand ever more convenient, economical, and efficient technologies to assemble and clone genes, gene libraries and synthetic pathways. Here, we describe the development of a novel and extremely simple cloning method, circular polymerase extension cloning (CPEC). This method uses a single polymerase to assemble and clone multiple inserts with any vector in a one-step reaction in vitro. No restriction digestion, ligation, or single-stranded homologous recombination is required. In this study, we elucidate the CPEC reaction mechanism and demonstrate its usage in demanding synthetic biology applications such as one-step assembly and cloning of complex combinatorial libraries and multi-component pathways.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Insect-Specific Flaviviruses: A Systematic Review of Their Discovery, Host Range, Mode of Transmission, Superinfection Exclusion Potential and Genomic Organization

            There has been a dramatic increase in the number of insect-specific flaviviruses (ISFs) discovered in the last decade. Historically, these viruses have generated limited interest due to their inability to infect vertebrate cells. This viewpoint has changed in recent years because some ISFs have been shown to enhance or suppress the replication of medically important flaviviruses in co-infected mosquito cells. Additionally, comparative studies between ISFs and medically important flaviviruses can provide a unique perspective as to why some flaviviruses possess the ability to infect and cause devastating disease in humans while others do not. ISFs have been isolated exclusively from mosquitoes in nature but the detection of ISF-like sequences in sandflies and chironomids indicates that they may also infect other dipterans. ISFs can be divided into two distinct phylogenetic groups. The first group currently consists of approximately 12 viruses and includes cell fusing agent virus, Kamiti River virus and Culex flavivirus. These viruses are phylogenetically distinct from all other known flaviviruses. The second group, which is apparently not monophyletic, currently consists of nine viruses and includes Chaoyang virus, Nounané virus and Lammi virus. These viruses phylogenetically affiliate with mosquito/vertebrate flaviviruses despite their apparent insect-restricted phenotype. This article provides a review of the discovery, host range, mode of transmission, superinfection exclusion ability and genomic organization of ISFs. This article also attempts to clarify the ISF nomenclature because some of these viruses have been assigned more than one name due to their simultaneous discoveries by independent research groups.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication.

              Yellow fever virus (YF) is the prototype member of the Flavivirus genus. Here, we report the successful construction of a full-length infectious cDNA clone of the vaccine strain YF-17D. YF cDNA was cloned into a low-copy-number plasmid backbone and stably maintained in several E. coli strains. Transcribed RNAs had a specific infectivity of 10(5)-10(6) p.f.u. ( micro g RNA)(-1), and the resulting virus exhibited growth kinetics, plaque morphology and proteolytic processing similar to the parental virus in cell culture. This clone was used to analyse the importance of conserved flavivirus RNA sequences and the 3' stem-loop structure in virus replication. The conserved sequences 5'CS and CS1, as well as the 3' stem-loop structure, were found to be essential for virus replication in cell culture, whereas the conserved sequence CS2 and the region containing YF-specific repeated sequences were dispensable. This infectious clone will aid future studies on YF replication and pathogenesis, as well as facilitate the development of YF-17D-based recombinant vaccines.
                Bookmark

                Author and article information

                Contributors
                alexander.khromykh@uq.edu.au
                roy.hall@uq.edu.au
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 June 2017
                7 June 2017
                2017
                : 7
                : 2940
                Affiliations
                ISNI 0000 0000 9320 7537, GRID grid.1003.2, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, , The University of Queensland, ; St Lucia, 4072 Queensland Australia
                Author information
                http://orcid.org/0000-0002-1657-8558
                Article
                3120
                10.1038/s41598-017-03120-1
                5462777
                5369fc66-5ca2-49f2-9fff-71245af8e64a
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 January 2017
                : 24 April 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article