51
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Indicators used in livestock to assess unconsciousness after stunning: a review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Assessing unconsciousness is important to safeguard animal welfare shortly after stunning at the slaughter plant. Indicators that can be visually evaluated are most often used when assessing unconsciousness, as they can be easily applied in slaughter plants. These indicators include reflexes originating from the brain stem (e.g. eye reflexes) or from the spinal cord (e.g. pedal reflex) and behavioural indicators such as loss of posture, vocalisations and rhythmic breathing. When physically stunning an animal, for example, captive bolt, most important indicators looked at are posture, righting reflex, rhythmic breathing and the corneal or palpebral reflex that should all be absent if the animal is unconscious. Spinal reflexes are difficult as a measure of unconsciousness with this type of stunning, as they may occur more vigorous. For stunning methods that do not physically destroy the brain, for example, electrical and gas stunning, most important indicators looked at are posture, righting reflex, natural blinking response, rhythmic breathing, vocalisations and focused eye movement that should all be absent if the animal is unconscious. Brain stem reflexes such as the cornea reflex are difficult as measures of unconsciousness in electrically stunned animals, as they may reflect residual brain stem activity and not necessarily consciousness. Under commercial conditions, none of the indicators mentioned above should be used as a single indicator to determine unconsciousness after stunning. Multiple indicators should be used to determine unconsciousness and sufficient time should be left for the animal to die following exsanguination before starting invasive dressing procedures such as scalding or skinning. The recording and subsequent assessment of brain activity, as presented in an electroencephalogram (EEG), is considered the most objective way to assess unconsciousness compared with reflexes and behavioural indicators, but is only applied in experimental set-ups. Studies performed in an experimental set-up have often looked at either the EEG or reflexes and behavioural indicators and there is a scarcity of studies that correlate these different readout parameters. It is recommended to study these correlations in more detail to investigate the validity of reflexes and behavioural indicators and to accurately determine the point in time at which the animal loses consciousness.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Consciousness and anesthesia.

          When we are anesthetized, we expect consciousness to vanish. But does it always? Although anesthesia undoubtedly induces unresponsiveness and amnesia, the extent to which it causes unconsciousness is harder to establish. For instance, certain anesthetics act on areas of the brain's cortex near the midline and abolish behavioral responsiveness, but not necessarily consciousness. Unconsciousness is likely to ensue when a complex of brain regions in the posterior parietal area is inactivated. Consciousness vanishes when anesthetics produce functional disconnection in this posterior complex, interrupting cortical communication and causing a loss of integration; or when they lead to bistable, stereotypic responses, causing a loss of information capacity. Thus, anesthetics seem to cause unconsciousness when they block the brain's ability to integrate information.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural bases of goal-directed locomotion in vertebrates--an overview.

            The different neural control systems involved in goal-directed vertebrate locomotion are reviewed. They include not only the central pattern generator networks in the spinal cord that generate the basic locomotor synergy and the brainstem command systems for locomotion but also the control systems for steering and control of body orientation (posture) and finally the neural structures responsible for determining which motor programs should be turned on in a given instant. The role of the basal ganglia is considered in this context. The review summarizes the available information from a general vertebrate perspective, but specific examples are often derived from the lamprey, which provides the most detailed information when considering cellular and network perspectives.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Behavioural biologists don't agree on what constitutes behaviour.

              Behavioural biology is a major discipline within biology, centred on the key concept of `behaviour.' But how is `behaviour' defined, and how should it be defined? We outline what characteristics we believe a scientific definition should have, and why we think it important that a definition have these traits. We then examine the range of available published definitions for the word. Finding no consensus, we present survey responses from 174 members of three behaviour-focused scientific societies as to their understanding of the term. Here again, we find surprisingly widespread disagreement as to what qualifies as behaviour. Respondents contradict themselves, each other, and published definitions, indicating that they are using individually variable intuitive, rather than codified, meanings of `behaviour.' We offer a new definition, based largely on survey responses: "Behaviour is the internally coordinated responses (actions or inactions) of whole living organisms (individuals or groups) to internal and/or external stimuli, excluding responses more easily understood as developmental changes." Finally, we discuss the usage, meanings and limitations of this definition.
                Bookmark

                Author and article information

                Journal
                Animal
                Animal
                ANM
                Animal
                Cambridge University Press (Cambridge, UK )
                1751-7311
                1751-732X
                30 October 2014
                February 2015
                : 9
                : 2
                : 320-330
                Affiliations
                [1 ]Wageningen University and Research Centre , Livestock Research, PO Box 65, 8200 AB Lelystad, The Netherlands
                [2 ]Adaptation Physiology Group, Department of Animal Sciences, Wageningen University , PO Box 338, 6700 AH Wageningen, The Netherlands
                [3 ]Faculty of Veterinary Medicine, Utrecht University , PO Box 80154, 3508 TD Utrecht, The Netherlands
                Author notes
                [†]

                Present address: Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.

                Article
                S1751731114002596 00259
                10.1017/S1751731114002596
                4299535
                25354537
                538079d5-c23d-4dc4-893d-947fff5d3652
                © The Animal Consortium 2014

                This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 April 2014
                : 23 September 2014
                Page count
                Figures: 0, Tables: 3, Pages: 11
                Categories
                Behaviour, Welfare and Health

                Animal science & Zoology
                animal welfare,livestock,slaughter,stunning,unconsciousness
                Animal science & Zoology
                animal welfare, livestock, slaughter, stunning, unconsciousness

                Comments

                Comment on this article