18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultrafast three-dimensional microbubble imaging in vivo predicts tissue damage volume distributions during nonthermal brain ablation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcranial magnetic resonance imaging (MRI)-guided focused ultrasound (FUS) thermal ablation is under clinical investigation for non-invasive neurosurgery, though its use is restricted to central brain targets due primarily to skull heating effects. The combination of FUS and contrast agent microbubbles greatly reduces the ultrasound exposure levels needed to ablate brain tissue and may help facilitate the use of transcranial FUS ablation throughout the brain. However, sources of variability exist during microbubble-mediated FUS procedures that necessitate the continued development of systems and methods for online treatment monitoring and control, to ensure that excessive and/or off-target bioeffects are not induced from the exposures.

          Methods: Megahertz-rate three-dimensional (3D) microbubble imaging in vivo was performed during nonthermal ablation in rabbit brain using a clinical-scale prototype transmit/receive hemispherical phased array system.

          Results: In-vivo volumetric acoustic imaging over microsecond timescales uncovered spatiotemporal microbubble dynamics hidden by conventional whole-burst temporal averaging. Sonication-aggregate ultrafast 3D source field intensity data were predictive of microbubble-mediated tissue damage volume distributions measured post-treatment using MRI and confirmed via histopathology. Temporal under-sampling of acoustic emissions, which is common practice in the field, was found to impede performance and highlighted the importance of capturing adequate data for treatment monitoring and control purposes.

          Conclusion: The predictive capability of ultrafast 3D microbubble imaging, reported here for the first time, will enable future microbubble-mediated FUS treatments with unparalleled precision and accuracy, and will accelerate the clinical translation of nonthermal tissue ablation procedures both in the brain and throughout the body.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical trial of blood-brain barrier disruption by pulsed ultrasound.

          The blood-brain barrier (BBB) limits the delivery of systemically administered drugs to the brain. Methods to circumvent the BBB have been developed, but none are used in standard clinical practice. The lack of adoption of existing methods is due to procedural invasiveness, serious adverse effects, and the complications associated with performing such techniques coincident with repeated drug administration, which is customary in chemotherapeutic protocols. Pulsed ultrasound, a method for disrupting the BBB, was shown to effectively increase drug concentrations and to slow tumor growth in preclinical studies. We now report the interim results of an ultrasound dose-escalating phase 1/2a clinical trial using an implantable ultrasound device system, SonoCloud, before treatment with carboplatin in patients with recurrent glioblastoma (GBM). The BBB of each patient was disrupted monthly using pulsed ultrasound in combination with systemically injected microbubbles. Contrast-enhanced magnetic resonance imaging (MRI) indicated that the BBB was disrupted at acoustic pressure levels up to 1.1 megapascals without detectable adverse effects on radiologic (MRI) or clinical examination. Our preliminary findings indicate that repeated opening of the BBB using our pulsed ultrasound system, in combination with systemic microbubble injection, is safe and well tolerated in patients with recurrent GBM and has the potential to optimize chemotherapy delivery in the brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Overview of therapeutic ultrasound applications and safety considerations.

            Applications of ultrasound in medicine for therapeutic purposes have been accepted and beneficial uses of ultrasonic biological effects for many years. Low-power ultrasound of about 1 MHz has been widely applied since the 1950s for physical therapy in conditions such as tendinitis and bursitis. In the 1980s, high-pressure-amplitude shock waves came into use for mechanically resolving kidney stones, and "lithotripsy" rapidly replaced surgery as the most frequent treatment choice. The use of ultrasonic energy for therapy continues to expand, and approved applications now include uterine fibroid ablation, cataract removal (phacoemulsification), surgical tissue cutting and hemostasis, transdermal drug delivery, and bone fracture healing, among others. Undesirable bioeffects can occur, including burns from thermal-based therapies and severe hemorrhage from mechanical-based therapies (eg, lithotripsy). In all of these therapeutic applications of ultrasound bioeffects, standardization, ultrasound dosimetry, benefits assurance, and side-effect risk minimization must be carefully considered to ensure an optimal benefit to risk ratio for the patient. Therapeutic ultrasound typically has well-defined benefits and risks and therefore presents a manageable safety problem to the clinician. However, safety information can be scattered, confusing, or subject to commercial conflicts of interest. Of paramount importance for managing this problem is the communication of practical safety information by authoritative groups, such as the American Institute of Ultrasound in Medicine, to the medical ultrasound community. In this overview, the Bioeffects Committee of the American Institute of Ultrasound in Medicine outlines the wide range of therapeutic ultrasound methods, which are in clinical use or under study, and provides general guidance for ensuring therapeutic ultrasound safety.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound

              MR-guided focused ultrasound (MRgFUS) is an emerging technology that can accurately and transiently permeabilize the blood-brain barrier (BBB) for targeted drug delivery to the central nervous system. We conducted a single-arm, first-in-human trial to investigate the safety and feasibility of MRgFUS-induced BBB opening in eloquent primary motor cortex in four volunteers with amyotrophic lateral sclerosis (ALS). Here, we show successful BBB opening using MRgFUS as demonstrated by gadolinium leakage at the target site immediately after sonication in all subjects, which normalized 24 hours later. The procedure was well-tolerated with no serious clinical, radiologic or electroencephalographic adverse events. This study demonstrates that non-invasive BBB permeabilization over the motor cortex using MRgFUS is safe, feasible, and reversible in ALS subjects. In future, MRgFUS can be coupled with promising therapeutics providing a targeted delivery platform in ALS.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2020
                1 June 2020
                : 10
                : 16
                : 7211-7230
                Affiliations
                [1 ]Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada.
                [2 ]Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
                [3 ]Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
                Author notes
                ✉ Corresponding author: Ryan M. Jones, Sunnybrook Research Institute, 2075 Bayview Avenue, C7 36b, Toronto, Ontario, M4N 3M5, Canada. E-mail: rmjones@ 123456sri.utoronto.ca ; Tel: +1 416 480 6100 x 6156.

                Competing Interests: K.H. and R.M.J. are inventors on issued patents and pending patent applications related to the methods used in this study.

                Article
                thnov10p7211
                10.7150/thno.47281
                7330857
                32641988
                53da5adc-3780-4947-badb-5ed26d400423
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 22 April 2020
                : 22 May 2020
                Categories
                Research Paper

                Molecular medicine
                image-guided therapy,focused ultrasound,microbubble contrast agents,nonthermal ablation,ultrafast 3d acoustic imaging

                Comments

                Comment on this article