12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mechanisms of Increased Vascular Superoxide Production in Human Diabetes Mellitus : Role of NAD(P)H Oxidase and Endothelial Nitric Oxide Synthase

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor.

          Endothelium-derived vascular relaxing factor (EDRF) is a humoral agent that is released by vascular endothelium and mediates vasodilator responses induced by various substances including acetylcholine and bradykinin. EDRF is very unstable, with a half-life of between 6 and 50 s, and is clearly distinguishable from prostacyclin. The chemical structure of EDRF is unknown but it has been suggested that it is either a hydroperoxy- or free radical-derivative of arachidonic acid or an unstable aldehyde, ketone or lactone. We have examined the role of superoxide anion (O-2) in the inactivation of EDRF released from vascular endothelial cells cultured on microcarrier beads and bioassayed using a cascade of superfused aortic smooth muscle strips. With this system, we have now demonstrated that EDRF is protected from breakdown by superoxide dismutase (SOD) and Cu2+, but not by catalase, and is inactivated by Fe2+. These findings indicate that O-2 contributes significantly to the instability of EDRF.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells.

            Superoxide anion formation is vital to the microbicidal activity of phagocytes. Recently, however, there is accumulating evidence that it is also involved in cell growth in vascular smooth muscle cells (VSMCs). We have shown that the hypertrophic agent angiotensin II stimulates superoxide production by activating the membrane-bound NADH/NADPH oxidase and that inhibition of this oxidase attenuates vascular hypertrophy. However, the molecular identity of this oxidase in VSMCs is unknown. We have recently cloned the cytochrome b558 alpha-subunit, p22(phox) (one of the key electron transfer elements of the NADPH oxidase in phagocytes), from a rat VSMC cDNA library, but its role in VSMC oxidase activity remains unclarified. Here we report that the complete inhibition of p22(phox) mRNA expression by stable transfection of antisense p22(phox) cDNA into VSMCs results in a decrease in cytochrome b content, which is accompanied by a significant inhibition of angiotensin II-stimulated NADH/NADPH-dependent superoxide production, subsequent hydrogen peroxide production, and [3H]leucine incorporation. We provide the first evidence that p22(phox) is a critical component of superoxide-generating vascular NADH/NADPH oxidase and suggest a central role for this oxidase system in vascular hypertrophy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Superoxide and peroxynitrite in atherosclerosis.

              The role of reactive oxygen species in the vascular pathology associated with atherosclerosis was examined by testing the hypothesis that impaired vascular reactivity results from the reaction of nitric oxide (.NO) with superoxide (O2-), yielding the oxidant peroxynitrite (ONOO-). Contractility studies were performed on femoral arteries from rabbits fed a cholesterol-supplemented diet. Cholesterol feeding shifted the EC50 for acetylcholine (ACh)-induced relaxation and impaired the maximal response to ACh. We used pH-sensitive liposomes to deliver CuZn superoxide dismutase (SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) to critical sites of .NO reaction with O2-. Intravenously injected liposomes (3000 units of SOD per ml) augmented ACh-induced relaxation in the cholesterol-fed group to a greater extent than in controls. Quantitative immunocytochemistry demonstrated enhanced distribution of SOD in both endothelial and vascular smooth muscle cells as well as in the extracellular matrix. SOD activity in vessel homogenates of liposome-treated rabbits was also increased. Incubation of beta very low density lipoprotein with ONOO- resulted in the rapid formation of conjugated dienes and thiobarbituric acid-reactive substances. Our results suggest that the reaction of O2- with .NO is involved in the development of atherosclerotic disease by yielding a potent mediator of lipoprotein oxidation, as well as by limiting .NO stimulation of vascular smooth muscle guanylate cyclase activity.
                Bookmark

                Author and article information

                Journal
                Circulation
                Circulation
                Ovid Technologies (Wolters Kluwer Health)
                0009-7322
                1524-4539
                April 09 2002
                April 09 2002
                : 105
                : 14
                : 1656-1662
                Affiliations
                [1 ]From the Departments of Cardiovascular Medicine (T.J.G., S.M., K.M.C.) and Cardiothoracic Surgery (S.M., D.G., C.R., R.P.), University of Oxford, Oxford, UK, and Departments of Medicine (T.J.G.) and Cardiovascular Surgery and Transplantology (J.S.), Jagiellonian University School of Medicine, Cracow, Poland.
                Article
                10.1161/01.CIR.0000012748.58444.08
                11940543
                53e5cbb0-31d0-4e84-ac00-1761db1990d1
                © 2002
                History

                Comments

                Comment on this article