22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes in the Diversity of Soil Arbuscular Mycorrhizal Fungi after Cultivation for Biofuel Production in a Guantanamo (Cuba) Tropical System

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a native vegetation soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices- G. fasciculatum-G. irregulare) did not occur in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C) were higher in the soil cultivated with the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the native vegetation soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable for the long-term conservation and sustainable management of these tropical ecosytems.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi.

          A set of PCR primers that should amplify all subgroups of arbuscular mycorrhizal fungi (AMF, Glomeromycota), but exclude sequences from other organisms, was designed to facilitate rapid detection and identification directly from field-grown plant roots. The small subunit rRNA gene was targeted for the new primers (AML1 and AML2) because phylogenetic relationships among the Glomeromycota are well understood for this gene. Sequence comparisons indicate that the new primers should amplify all published AMF sequences except those from Archaeospora trappei. The specificity of the new primers was tested using 23 different AMF spore morphotypes from trap cultures and Miscanthus sinensis, Glycine max and Panax ginseng roots sampled from the field. Non-AMF DNA of 14 plants, 14 Basidiomycota and 18 Ascomycota was also tested as negative controls. Sequences amplified from roots using the new primers were compared with those obtained using the established NS31 and AM1 primer combination. The new primers have much better specificity and coverage of all known AMF groups.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Co-existing grass species have distinctive arbuscular mycorrhizal communities.

            Arbuscular mycorrhizal (AM) fungi are biotrophic symbionts colonizing the majority of land plants, and are of major importance in plant nutrient supply. Their diversity is suggested to be an important determinant of plant community structure, but the influence of host-plant and environmental factors on AM fungal community in plant roots is poorly documented. Using the terminal restriction fragment length polymorphism (T-RFLP) strategy, the diversity of AM fungi was assessed in 89 roots of three grass species (Agrostis capillaris, Festuca rubra, Poa pratensis) that co-occurred in the same plots of a field experiment. The impact of different soil amendments (nitrogen, lime, nitrogen and lime) and insecticide application on AM fungal community was also studied. The level of diversity found in AM fungal communities using the T-RFLP strategy was consistent with previous studies based on clone libraries. Our results clearly confirm that an AM fungal host-plant preference exists, even between different grass species. AM communities colonizing A. capillaris were statistically different from the others (P < 0.05). Although grass species evenness changed in amended soils, AM fungal community composition in roots of a given grass species remained stable. Conversely, in plots where insecticide was applied, we found higher AM fungal diversity and, in F. rubra roots, a statistically different AM fungal community.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest.

              We have used molecular techniques to investigate the diversity and distribution of the arbuscular mycorrhizal (AM) fungi colonizing tree seedling roots in the tropical forest on Barro Colorado Island (BCI), Republic of Panama. In the first year, we sampled newly emergent seedlings of the understory treelet Faramea occidentalis and the canopy emergent Tetragastris panamensis, from mixed seedling carpets at each of two sites. The following year we sampled surviving seedlings from these cohorts. The roots of 48 plants were analysed using AM fungal-specific primers to amplify and clone partial small subunit (SSU) ribosomal RNA gene sequences. Over 1300 clones were screened for random fragment length polymorphism (RFLP) variation and 7% of these were sequenced. Compared with AM fungal communities sampled from temperate habitats using the same method, the overall diversity was high, with a total of 30 AM fungal types identified. Seventeen of these types have not been recorded previously, with the remainder being similar to types reported from temperate habitats. The tropical mycorrhizal population showed significant spatial heterogeneity and nonrandom associations with the different hosts. Moreover there was a strong shift in the mycorrhizal communities over time. AM fungal types that were dominant in the newly germinated seedlings were almost entirely replaced by previously rare types in the surviving seedlings the following year. The high diversity and huge variation detected across time points, sites and hosts, implies that the AM fungal types are ecologically distinct and thus may have the potential to influence recruitment and host composition in tropical forests.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                19 April 2012
                : 7
                : 4
                : e34887
                Affiliations
                [1 ]CSIC-Centro de Edafología y Biología Aplicada del Segura, Department of Soil and Water Conservation, Campus de Espinardo, Murcia, Spain
                [2 ]Instituto de Ecología y Sistemática-CITMA, Grupo de Ecología del Suelo, Capdevila Rancho Boyeros, La Habana, Cuba
                University of Tartu, Estonia
                Author notes

                Conceived and designed the experiments: MMA ET GH AR. Performed the experiments: MMA ET GH AR. Analyzed the data: MMA ET GH AR. Contributed reagents/materials/analysis tools: MMA ET GH AR. Wrote the paper: MMA AR.

                Article
                PONE-D-11-23877
                10.1371/journal.pone.0034887
                3334937
                22536339
                53f37c4a-1025-42b0-b817-92996ec9ffaa
                Alguacil et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 November 2011
                : 8 March 2012
                Page count
                Pages: 8
                Categories
                Research Article
                Agriculture
                Biofuels
                Biodiesel
                Crops
                Crop Management
                Sustainable Agriculture
                Biology
                Ecology
                Community Ecology
                Community Structure
                Ecosystems
                Ecosystem Functioning
                Biodiversity
                Soil Ecology
                Genetics
                Population Genetics
                Microbiology
                Mycology
                Fungi

                Uncategorized
                Uncategorized

                Comments

                Comment on this article