15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Computational anatomy of the proximal humerus: An ex vivo high-resolution peripheral quantitative computed tomography study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background/Objective

          Spatial knowledge of the anatomy of the proximal humerus is critical for effective treatment, particularly in patients affected by fragility fractures. High-resolution peripheral quantitative computed tomography (HR-pQCT) imaging with medical image processing techniques enable three dimensional (3D) analysis of volumetric bone mineral density (vBMD) of bones of different sizes and shapes.

          Methods

          To elucidate the bony anatomy and to create 3D reference data, we conducted a computerized HR-pQCT-based study in intact postmortem samples of the proximal humerus to highlight the anatomy with particular emphasis on the size, shape, and bone stock distribution pattern.

          Fifty-eight defrozen intact humerus samples from 28 female and 30 male donors, who were aged 61–98 years old (mean age ± standard deviation, 80.6 ± 9 years), were scanned in the proximal third using the extended standard HR-pQCT protocol. A 3D statistical bone and averaged bone density models with low, middle, and high total vBMDs were computed. We examined the 3D patterns of size and shape variations using principal component analysis, and the vBMD distributions and variabilities using volume-rendering and virtual bore probing.

          Results

          The computer models revealed a highly variable bony anatomy in which size was the predominant variation in the first principal component (PC). In the second PC, we observed notable variabilities in the shape of the head and shaft inclination. A distinct 3D pattern of bone stock distribution was detected in which the lowest vBMD values were identified in the medullary cavity, middle values were identified in the central zone, and the highest values were identified in the cortex and humeral head—particularly in the subarticular zones. In the presence of bone loss, the vBMD values were ubiquitously decreased, but the pattern of 3D bone stock distribution was maintained.

          Conclusion

          The new anatomical 3D data that we acquired will improve the understanding of the normal bony anatomy of the proximal humerus. The extended HR-pQCT protocol and computer models may be used for other skeletal sites and used as 3D reference models that can be applied to systematically improve implant design and anchorage.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoporosis prevention, diagnosis, and therapy.

          (2001)
          To clarify the factors associated with prevention, diagnosis, and treatment of osteoporosis, and to present the most recent information available in these areas. From March 27-29, 2000, a nonfederal, nonadvocate, 13-member panel was convened, representing the fields of internal medicine, family and community medicine, endocrinology, epidemiology, orthopedic surgery, gerontology, rheumatology, obstetrics and gynecology, preventive medicine, and cell biology. Thirty-two experts from these fields presented data to the panel and an audience of 699. Primary sponsors were the National Institute of Arthritis and Musculoskeletal and Skin Diseases and the National Institutes of Health Office of Medical Applications of Research. MEDLINE was searched for January 1995 through December 1999, and a bibliography of 2449 references provided to the panel. Experts prepared abstracts for presentations with relevant literature citations. Scientific evidence was given precedence over anecdotal experience. The panel, answering predefined questions, developed conclusions based on evidence presented in open forum and the literature. The panel composed a draft statement, which was read and circulated to the experts and the audience for public discussion. The panel resolved conflicts and released a revised statement at the end of the conference. The draft statement was posted on the Web on March 30, 2000, and updated with the panel's final revisions within a few weeks. Though prevalent in white postmenopausal women, osteoporosis occurs in all populations and at all ages and has significant physical, psychosocial, and financial consequences. Risks for osteoporosis (reflected by low bone mineral density [BMD]) and for fracture overlap but are not identical. More attention should be paid to skeletal health in persons with conditions associated with secondary osteoporosis. Clinical risk factors have an important but poorly validated role in determining who should have BMD measurement, in assessing fracture risk, and in determining who should be treated. Adequate calcium and vitamin D intake is crucial to develop optimal peak bone mass and to preserve bone mass throughout life. Supplementation with these 2 nutrients may be necessary in persons not achieving recommended dietary intake. Gonadal steroids are important determinants of peak and lifetime bone mass in men, women, and children. Regular exercise, especially resistance and high-impact activities, contributes to development of high peak bone mass and may reduce risk of falls in older persons. Assessment of bone mass, identification of fracture risk, and determination of who should be treated are the optimal goals when evaluating patients for osteoporosis. Fracture prevention is the primary treatment goal for patients with osteoporosis. Several treatments have been shown to reduce the risk of osteoporotic fractures, including those that enhance bone mass and reduce the risk or consequences of falls. Adults with vertebral, rib, hip, or distal forearm fractures should be evaluated for osteoporosis and given appropriate therapy.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Displaced proximal humeral fractures. I. Classification and evaluation.

              C S Neer (1970)
                Bookmark

                Author and article information

                Contributors
                Journal
                J Orthop Translat
                J Orthop Translat
                Journal of Orthopaedic Translation
                Chinese Speaking Orthopaedic Society
                2214-031X
                2214-0328
                20 October 2015
                January 2016
                20 October 2015
                : 4
                : 46-56
                Affiliations
                [a ]AO Research Institute Davos, Davos, Switzerland
                [b ]Department of Osteoporosis, Inselspital Bern, University Hospital and University of Bern, Bern, Switzerland
                [c ]Department of Trauma, Hand and Reconstructive Surgery, University Hospital Jena, Jena, Germany
                [d ]Department of Trauma Surgery and Sportsmedicine, Medical University of Innsbruck, Innsbruck, Austria
                Author notes
                []Corresponding author. AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland. lukas.kamer@ 123456aofoundation.org
                Article
                S2214-031X(15)00070-4
                10.1016/j.jot.2015.09.006
                5987007
                30035065
                540bd4b4-ac26-4c3a-82bc-d1242a5b6cf7
                © 2016 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 1 April 2015
                : 2 August 2015
                : 8 September 2015
                Categories
                Original Article

                bone mineral density,fracture,high-resolution peripheral quantitative computed tomography,osteoporosis,proximal humerus,three-dimensional statistical bone model

                Comments

                Comment on this article