75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ROS and RNS Signaling in Heart Disorders: Could Antioxidant Treatment Be Successful?

      review-article
      *
      Oxidative Medicine and Cellular Longevity
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is not too much success in the antioxidant treatment of heart deceases in humans. However a new approach is now developed that suggests that depending on their structures and concentrations antioxidants can exhibit much more complicated functions in many pathological disorders. It is now well established that physiological free radicals superoxide and nitric oxide together with their derivatives hydrogen peroxide and peroxynitrite (all are named reactive oxygen species (ROS) and reactive nitrogen species (RNS)) play a more important role in heart diseases through their signaling functions. Correspondingly this work is dedicated to the consideration of damaging signaling by ROS and RNS in various heart and vascular disorders: heart failure (congestive heart failure or CHF), left ventricular hypertrophy (LVH), coronary heart disease, cardiac arrhythmias, and so forth. It will be demonstrated that ROS overproduction (oxidative stress) is a main origin of the transformation of normal physiological signaling processes into the damaging ones. Furthermore the favorable effects of low/moderate oxidative stress through preconditioning mechanisms in ischemia/reperfusion will be considered. And in the last part we will discuss the possibility of efficient application of antioxidants and enzyme/gene inhibitors for the regulation of damaging ROS signaling in heart disorders.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart.

          NAD(P)H oxidases (Noxs) produce O(2)(-) and play an important role in cardiovascular pathophysiology. The Nox4 isoform is expressed primarily in the mitochondria in cardiac myocytes. To elucidate the function of endogenous Nox4 in the heart, we generated cardiac-specific Nox4(-/-) (c-Nox4(-/-)) mice. Nox4 expression was inhibited in c-Nox4(-/-) mice in a heart-specific manner, and there was no compensatory up-regulation in other Nox enzymes. These mice exhibited reduced levels of O(2)(-) in the heart, indicating that Nox4 is a significant source of O(2)(-) in cardiac myocytes. The baseline cardiac phenotype was normal in young c-Nox4(-/-) mice. In response to pressure overload (PO), however, increases in Nox4 expression and O(2)(-) production in mitochondria were abolished in c-Nox4(-/-) mice, and c-Nox4(-/-) mice exhibited significantly attenuated cardiac hypertrophy, interstitial fibrosis and apoptosis, and better cardiac function compared with WT mice. Mitochondrial swelling, cytochrome c release, and decreases in both mitochondrial DNA and aconitase activity in response to PO were attenuated in c-Nox4(-/-) mice. On the other hand, overexpression of Nox4 in mouse hearts exacerbated cardiac dysfunction, fibrosis, and apoptosis in response to PO. These results suggest that Nox4 in cardiac myocytes is a major source of mitochondrial oxidative stress, thereby mediating mitochondrial and cardiac dysfunction during PO.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1.

            Heme oxygenase (HO)-1 is a protective antioxidant enzyme that prevents cardiomyocyte apoptosis, for instance, during progressive cardiomyopathy. Here we identify a fundamental aspect of the HO-1 protection mechanism by demonstrating that HO-1 activity in mouse heart stimulates the bigenomic mitochondrial biogenesis program via induction of NF-E2-related factor (Nrf)2 gene expression and nuclear translocation. Nrf2 upregulates the mRNA, protein, and activity for HO-1 as well as mRNA and protein for nuclear respiratory factor (NRF)-1. Mechanistically, in cardiomyocytes, endogenous carbon monoxide (CO) generated by HO-1 overexpression stimulates superoxide dismutase-2 upregulation and mitochondrial H(2)O(2) production, which activates Akt/PKB. Akt deactivates glycogen synthase kinase-3beta, which permits Nrf2 nuclear translocation and occupancy of 4 antioxidant response elements (AREs) in the NRF-1 promoter. The ensuing accumulation of nuclear NRF-1 protein leads to gene activation for mitochondrial biogenesis, which opposes apoptosis and necrosis caused by the cardio-toxic anthracycline chemotherapeutic agent, doxorubicin. In cardiac cells, Akt silencing exacerbates doxorubicin-induced apoptosis, and in vivo CO rescues wild-type but not Akt1(-/-) mice from doxorubicin cardiomyopathy. These findings consign HO-1/CO signaling through Nrf2 and Akt to the myocardial transcriptional program for mitochondrial biogenesis, provide a rationale for targeted mitochondrial CO therapy, and connect cardiac mitochondrial volume expansion with the inducible network of xenobiotic and antioxidant cellular defenses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases.

              Reactive oxygen species (ROS) are important signal transduction molecules in ligand-induced signaling, regulation of cell growth, differentiation, apoptosis and motility. Recently NADPH oxidases (Nox) homologous to Nox2 (gp91phox) of phagocyte cytochrome b558 have been identified, which are an enzymatic source for ROS generation in epithelial cells. This study was undertaken to delineate the requirements for ROS generation by Nox4. Nox4, in contrast to other Nox proteins, produces large amounts of hydrogen peroxide constitutively. Known cytosolic oxidase proteins or the GTPase Rac are not required for this activity. Nox4 associates with the protein p22phox on internal membranes, where ROS generation occurs. Knockdown and gene transfection studies confirmed that Nox4 requires p22phox for ROS generation. Mutational analysis revealed structural requirements affecting expression of the p22phox protein and Nox activity. Mechanistic insight into ROS regulation is significant for understanding fundamental cell biology and pathophysiological conditions.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                OXIMED
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2011
                8 September 2011
                : 2011
                : 293769
                Affiliations
                Vitamin Research Institute, Moscow, Russia
                Author notes

                Academic Editor: Daniela Giustarini

                Article
                10.1155/2011/293769
                3170796
                21912722
                54284139-c2c9-4001-9e73-0600c4f94dfd
                Copyright © 2011 Igor Afanas'ev.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 April 2011
                : 30 May 2011
                : 2 June 2011
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article