19
views
1
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The clinicopathological significance of HES1 promoter hypomethylation in patients with colorectal cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hairy/enhancer of split 1 (HES1) is a basic helix–loop–helix transcriptional repressor. Aberrant demethylation has been considered a common mechanism of tumor promoter gene activation. In the current study, we aimed to investigate the methylation status of the HES1 promoter and correlations with clinicopathological parameters and prognosis in colorectal cancer (CRC). The expression of HES1 in 50 paired CRC specimens and adjacent normal tissues was determined by using quantitative real-time polymerase chain reaction and immunohistochemical analysis. Moreover, DNA methylation status was evaluated through methylation-specific polymerase chain reaction and bisulfite sequencing. The correlation of methylation status with HES1 expression level and clinicopathological parameters was statistically analyzed in CRC patients. Our data showed that the methylation level of HES1 was significantly decreased and negatively correlated with HES1 expression in CRC tissues. Moreover, HES1 hypomethylation was associated with a poor histological grade, Dukes’ classification, lymph node metastasis, and clinical stages ( P<0.05). Furthermore, survival analyses revealed that a decreased methylation status of HES1 was linked to poor prognosis of CRC patients. In conclusion, promoter hypomethylation upregulates HES1 expression and plays a critical role in the progression and prognosis of CRC patients.

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          DNA methylation and cancer.

          DNA methylation is one of the most intensely studied epigenetic modifications in mammals. In normal cells, it assures the proper regulation of gene expression and stable gene silencing. DNA methylation is associated with histone modifications and the interplay of these epigenetic modifications is crucial to regulate the functioning of the genome by changing chromatin architecture. The covalent addition of a methyl group occurs generally in cytosine within CpG dinucleotides which are concentrated in large clusters called CpG islands. DNA methyltransferases are responsible for establishing and maintenance of methylation pattern. It is commonly known that inactivation of certain tumor-suppressor genes occurs as a consequence of hypermethylation within the promoter regions and a numerous studies have demonstrated a broad range of genes silenced by DNA methylation in different cancer types. On the other hand, global hypomethylation, inducing genomic instability, also contributes to cell transformation. Apart from DNA methylation alterations in promoter regions and repetitive DNA sequences, this phenomenon is associated also with regulation of expression of noncoding RNAs such as microRNAs that may play role in tumor suppression. DNA methylation seems to be promising in putative translational use in patients and hypermethylated promoters may serve as biomarkers. Moreover, unlike genetic alterations, DNA methylation is reversible what makes it extremely interesting for therapy approaches. The importance of DNA methylation alterations in tumorigenesis encourages us to decode the human epigenome. Different DNA methylome mapping techniques are indispensable to realize this project in the future. Copyright © 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future.

            We have come a long way since the first reports of the existence of aberrant DNA methylation in human cancer. Hypermethylation of CpG islands located in the promoter regions of tumor suppressor genes is now firmly established as an important mechanism for gene inactivation. CpG island hypermethylation has been described in almost every tumor type. Many cellular pathways are inactivated by this type of epigenetic lesion: DNA repair (hMLH1, MGMT), cell cycle (p16(INK4a), p15(INK4b), p14(ARF)), apoptosis (DAPK), cell adherence (CDH1, CDH13), detoxification (GSTP1), etc em leader However, we still know little of the mechanisms of aberrant methylation and why certain genes are selected over others. Hypermethylation is not an isolated layer of epigenetic control, but is linked to the other pieces of the puzzle such as methyl-binding proteins, DNA methyltransferases and histone deacetylase, but our understanding of the degree of specificity of these epigenetic layers in the silencing of specific tumor suppressor genes remains incomplete. The explosion of user-friendly technologies has given rise to a rapidly increasing list of hypermethylated genes. Careful functional and genetic studies are necessary to determine which hypermethylation events are truly relevant for human tumorigenesis. The development of CpG island hypermethylation profiles for every form of human tumors has yielded valuable pilot clinical data in monitoring and treating cancer patients based in our knowledge of DNA methylation. Basic and translational will both be needed in the near future to fully understand the mechanisms, roles and uses of CpG island hypermethylation in human cancer. The expectations are high.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              On the presence and role of human gene-body DNA methylation

              DNA methylation of promoter sequences is a repressive epigenetic mark that down-regulates gene expression. However, DNA methylation is more prevalent within gene-bodies than seen for promoters, and gene-body methylation has been observed to be positively correlated with gene expression levels. This paradox remains unexplained, and accordingly the role of DNA methylation in gene-bodies is poorly understood. We addressed the presence and role of human gene-body DNA methylation using a meta-analysis of human genome-wide methylation, expression and chromatin data sets. Methylation is associated with transcribed regions as genic sequences have higher levels of methylation than intergenic or promoter sequences. We also find that the relationship between gene-body DNA methylation and expression levels is non-monotonic and bell-shaped. Mid-level expressed genes have the highest levels of gene-body methylation, whereas the most lowly and highly expressed sets of genes both have low levels of methylation. While gene-body methylation can be seen to efficiently repress the initiation of intragenic transcription, the vast majority of methylated sites within genes are not associated with intragenic promoters. In fact, highly expressed genes initiate the most intragenic transcription, which is inconsistent with the previously held notion that gene-body methylation serves to repress spurious intragenic transcription to allow for efficient transcriptional elongation. These observations lead us to propose a model to explain the presence of human gene-body methylation. This model holds that the repression of intragenic transcription by gene-body methylation is largely epiphenomenal, and suggests that gene-body methylation levels are predominantly shaped via the accessibility of the DNA to methylating enzyme complexes.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OncoTargets and Therapy
                OncoTargets and therapy
                Dove Medical Press
                1178-6930
                2017
                08 December 2017
                : 10
                : 5827-5834
                Affiliations
                [1 ]Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, Zhejiang
                [2 ]Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
                Author notes
                Correspondence: Xiaowu Xu; Zhenyuan Qian, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Number 158 Shangtang Road, Hangzhou 310000, Zhejiang, People’s Republic of China, Tel/fax +86 571 8533 5800, Email xuxiaowu77@ 123456hotmail.com ; qgrdfito@ 123456sina.com
                [*]

                These authors contributed equally to this work

                Article
                ott-10-5827
                10.2147/OTT.S151857
                5726367
                29263679
                542963a3-38b6-4590-b3b2-a730700416ab
                © 2017 Wu et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Oncology & Radiotherapy
                colorectal cancer,hes1,hypomethylation,prognosis,progression
                Oncology & Radiotherapy
                colorectal cancer, hes1, hypomethylation, prognosis, progression

                Comments

                Comment on this article