17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Proteomic analysis of the bacterial cell cycle

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A global approach was used to analyze protein synthesis and stability during the cell cycle of the bacterium Caulobacter crescentus. Approximately one-fourth (979) of the estimated C. crescentus gene products were detected by two-dimensional gel electrophoresis, 144 of which showed differential cell cycle expression patterns. Eighty-one of these proteins were identified by mass spectrometry and were assigned to a wide variety of functional groups. Pattern analysis revealed that coexpression groups were functionally clustered. A total of 48 proteins were rapidly degraded in the course of one cell cycle. More than half of these unstable proteins were also found to be synthesized in a cell cycle-dependent manner, establishing a strong correlation between rapid protein turnover and the periodicity of the bacterial cell cycle. This is, to our knowledge, the first evidence for a global role of proteolysis in bacterial cell cycle control.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms.

            We have carried out detailed statistical analyses of integral membrane proteins of the helix-bundle class from eubacterial, archaean, and eukaryotic organisms for which genome-wide sequence data are available. Twenty to 30% of all ORFs are predicted to encode membrane proteins, with the larger genomes containing a higher fraction than the smaller ones. Although there is a general tendency that proteins with a smaller number of transmembrane segments are more prevalent than those with many, uni-cellular organisms appear to prefer proteins with 6 and 12 transmembrane segments, whereas Caenorhabditis elegans and Homo sapiens have a slight preference for proteins with seven transmembrane segments. In all organisms, there is a tendency that membrane proteins either have many transmembrane segments with short connecting loops or few transmembrane segments with large extra-membraneous domains. Membrane proteins from all organisms studied, except possibly the archaeon Methanococcus jannaschii, follow the so-called "positive-inside" rule; i.e., they tend to have a higher frequency of positively charged residues in cytoplasmic than in extra-cytoplasmic segments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Iron and oxidative stress in bacteria.

              D Touati (2000)
              The appearance of oxygen on earth led to two major problems: the production of potentially deleterious reactive oxygen species and a drastic decrease in iron availability. In addition, iron, in its reduced form, potentiates oxygen toxicity by converting, via the Fenton reaction, the less reactive hydrogen peroxide to the more reactive oxygen species, hydroxyl radical and ferryl iron. Conversely superoxide, by releasing iron from iron-containing molecules, favors the Fenton reaction. It has been assumed that the strict regulation of iron assimilation prevents an excess of free intracellular iron that could lead to oxidative stress. Studies in bacteria supporting that view are reviewed. While genetic studies correlate oxidative stress with increase of intracellular free iron, there are only few and sometimes contradictory studies on direct measurements of free intracellular metal. Despite this weakness, the strict regulation of iron metabolism, and its coupling with regulation of defenses against oxidative stress, as well as the role played by iron in regulatory protein in sensing redox change, appear as essential factors for life in the presence of oxygen. Copyright 2000 Academic Press.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                April 10 2001
                April 03 2001
                April 10 2001
                : 98
                : 8
                : 4681-4686
                Article
                10.1073/pnas.071538098
                31894
                11287652
                542ddc81-13ec-40e4-a9e2-b81c2c7ed152
                © 2001
                History

                Comments

                Comment on this article