10
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before September 30, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      In Diabetic Kidney Disease Urinary Exosomes Better Represent Kidney Specific Protein Alterations Than Whole Urine

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Predicting or diagnosing underlying kidney disease by analyzing whole urine remains the mainstay of nephrology practice. However, whole urine is a poor compartment to assess many structural changes in the kidney because whole urine contains only a few proteins derived from the kidney itself. Urinary exosomes, on the other hand, which are derived from the kidney, contain proteins secreted by the kidney. We experimentally tested the hypothesis that ‘urinary exosomes more faithfully represent changes in the kidney tissue than whole urine'. A direct comparison between whole urine and urine exosomal levels of two chosen kidney disease markers, gelatinase and ceruloplasmin, was carried out on diabetic kidney disease patients. Methods: Urinary exosomes were separated from whole urine by sequential centrifugation including ultra-centrifugation. Gelatinase activity was measured using fluorosceinated gelatin as the substrate, and ceruloplasmin was measured by sandwich ELISA. A few kidney specimens from patients biopsied for atypical features were histochemically stained for validation of the biochemical results. Results: We found that changes in both, gelatinase (decreased activity) and ceruloplasmin (increased levels), in the urinary exosomes of diabetic kidney patients were in agreement with the alterations of these two proteins in the kidney tissue. In contrast, the levels of these two proteins in whole urine were highly variable and did not correlate with levels in the diabetic kidney tissue. Conclusion: In conclusion, these results confirmed our hypothesis that protein markers in urinary exosomes better reflected the underlying protein changes in the kidney than in whole urine samples.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury.

          Urinary exosomes containing apical membrane and intracellular fluid are normally secreted into the urine from all nephron segments, and may carry protein markers of renal dysfunction and structural injury. We aimed to discover biomarkers in urinary exosomes to detect acute kidney injury (AKI), which has a high mortality and morbidity. Animals were injected with cisplatin. Urinary exosomes were isolated by differential centrifugation. Protein changes were evaluated by two-dimensional difference in gel electrophoresis and changed proteins were identified by mass spectrometry. The identified candidate biomarkers were validated by Western blotting in individual urine samples from rats subjected to cisplatin injection; bilateral ischemia and reperfusion (I/R); volume depletion; and intensive care unit (ICU) patients with and without AKI. We identified 18 proteins that were increased and nine proteins that were decreased 8 h after cisplatin injection. Most of the candidates could not be validated by Western blotting. However, exosomal Fetuin-A increased 52.5-fold at day 2 (1 day before serum creatinine increase and tubule damage) and remained elevated 51.5-fold at day 5 (peak renal injury) after cisplatin injection. By immunoelectron microscopy and elution studies, Fetuin-A was located inside urinary exosomes. Urinary Fetuin-A was increased 31.6-fold in the early phase (2-8 h) of I/R, but not in prerenal azotemia. Urinary exosomal Fetuin-A also increased in three ICU patients with AKI compared to the patients without AKI. We conclude that (1) proteomic analysis of urinary exosomes can provide biomarker candidates for the diagnosis of AKI and (2) urinary Fetuin-A might be a predictive biomarker of structural renal injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Matrix metalloproteinases in kidney homeostasis and diseases.

            Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that have been increasingly linked to both normal physiology and abnormal pathology in the kidney. Collectively able to degrade all components of the extracellular matrix, MMPs were originally thought to antagonize the development of fibrotic diseases solely through digestion of excessive matrix. However, increasing evidence has shown that MMPs play a wide variety of roles in regulating inflammation, epithelial-mesenchymal transition, cell proliferation, angiogenesis, and apoptosis. We now have robust evidence for MMP dysregulation in a multitude of renal diseases including acute kidney injury, diabetic nephropathy, glomerulonephritis, inherited kidney disease, and chronic allograft nephropathy. The goal of this review is to summarize current findings regarding the role of MMPs in kidney diseases as well as the mechanisms of action of this family of proteases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy.

              To identify biomarker candidates associated with early IgA nephropathy (IgAN) and thin basement membrane nephropathy (TBMN), the most common causes presenting isolated hematuria in childhood, a proteomic approach of urinary exosomes from early IgAN and TBMN patients was introduced. The proteomic results from the patients were compared with a normal group to understand the pathophysiological processes associated with these diseases at the protein level. The urinary exosomes, which reflect pathophysiological processes, collected from three groups of young adults (early IgAN, TBMN, and normal) were trypsin-digested using a gel-assisted protocol, and quantified by label-free LC-MS/MS, using an MS(E) mode. A total of 1877 urinary exosome proteins, including cytoplasmic, membrane, and vesicle trafficking proteins, were identified. Among the differentially expressed proteins, four proteins (aminopeptidase N, vasorin precursor, α-1-antitrypsin, and ceruloplasmin) were selected as biomarker candidates to differentiate early IgAN from TBMN. We confirmed the protein levels of the four biomarker candidates by semi-quantitative immunoblot analysis in urinary exosomes independently prepared from other patients, including older adult groups. Further clinical studies are needed to investigate the diagnostic and prognostic value of these urinary markers for early IgAN and TBMN. Taken together, this study showed the possibility of identifying biomarker candidates for human urinary diseases using urinary exosomes and might help to understand the pathophysiology of early IgAN and TBMN at the protein level. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Journal
                AJN
                Am J Nephrol
                10.1159/issn.0250-8095
                American Journal of Nephrology
                Am J Nephrol
                S. Karger AG (Basel, Switzerland karger@ 123456karger.com http://www.karger.com )
                0250-8095
                1421-9670
                February 2016
                13 January 2016
                : 42
                : 6
                : 418-424
                Affiliations
                aDivision of Nephrology, John H. Stroger, Jr. Hospital of Cook County (JSH), and bDepartment of Internal Medicine and cDepartment of Pathology, Rush University Medical College, dSection of Nephrology, University of Illinois at Chicago, and eThe Hektoen Institute of Medicine, Chicago, Ill., USA
                Article
                AJN2015042006418 Am J Nephrol 2015;42:418-424
                10.1159/000443539
                26756605
                54313d66-4df3-4168-a096-b21e3247526c
                © 2016 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 20 October 2015
                : 16 December 2015
                Page count
                Figures: 4, Tables: 2, References: 40, Pages: 7
                Categories
                Original Report: Laboratory Investigation

                Medicine,General social science
                Diabetic nephropathy,Urinary exosomes,Gelatinase,Ceruloplasmin,Histochemistry

                Comments

                Comment on this article