9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Displacement of the Lamina Cribrosa in Response to Acute Intraocular Pressure Elevation in Normal Individuals of African and European Descent

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To assess if the in vivo mechanical displacement of the anterior laminar cribrosa surface (ALCS) as a response of an acute elevation in intraocular pressure (IOP) differs in individuals of European (ED) and African descent (AD).

          Methods

          Spectral-domain optical coherence tomography (SDOCT) scans were obtained from 24 eyes of 12 individuals of AD and 18 eyes of 9 individuals of ED at their normal baseline IOP and after 60 seconds IOP elevation using ophthalmodynamometry. Change in depth (displacement) of the LC and to the prelaminar tissue (PLT) were computed in association with the change (delta) in IOP (Δ IOP), race, age, corneal thickness, corneal rigidity (ocular response analyzer [ORA]), and axial.

          Results

          In the ED group for small IOP elevations (Δ IOP < 12 mm Hg), the ALCS initially displaced posteriorly but for larger increase of IOP an anterior displacement of the lamina followed. Inversely, in the AD group the ALCS did not show a significant posterior displacement for small Δ IOP, while for larger IOP increases the ALCS significantly displaced posteriorly. Posterior displacement of the lamina cribrosa (LC) was also significantly correlated with longer axial length, higher corneal thickness, and ORA parameters. Prelaminar tissue posteriorly displaced for any magnitude of Δ IOP, in both groups.

          Conclusions

          The African descent group demonstrated a greater acute posterior bowing of the LC after adjustment for age, axial length, Bruch's membrane opening (BMO) area, and ORA parameters. Greater PLT posterior displacement was also seen in the AD group with increasing IOP, which was tightly correlated with the displacement of the LC.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage.

          We examined the histologic structure of the optic nerve head in 15 eyes of nine persons with a known glaucoma history. All had been seeing eyes, varying from normal visual acuity and visual field to advanced glaucoma damage. The site of damage to nerve fibers is the scleral lamina cribrosa, where there is local blockage of axonal transport. Early cup size increase prior to definite field loss results from loss of nerve fibers, not from damage to astrocytic glial cells of the nerve head. No selective damage to nerve head capillaries is seen in mildly damaged specimens. Scanning electron microscopic analysis suggests that the structure of the lamina cribrosa is an important determinant of the degree of susceptibility to damage by elevated intraocular pressure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Factors influencing optic nerve head biomechanics.

            The biomechanical environment within the optic nerve head (ONH) may play a role in retinal ganglion cell loss in glaucomatous optic neuropathy. This was a systematic analysis in which finite element methods were used to determine which anatomic and biomechanical factors most influenced the biomechanical response of the ONH to acute changes in IOP. Based on a previously described computational model of the eye, each of 21 input factors, representing the biomechanical properties of relevant ocular tissues, the IOP, and 14 geometric factors were independently varied. The biomechanical response of the ONH tissues was quantified through a set of 29 outcome measures, including peak and mean stress and strain within each tissue, and measures of geometric changes in ONH tissues. Input factors were ranked according to their aggregated influence on groups of outcome measures. The five input factors that had the largest influence across all outcome measures were, in ranked order: stiffness of the sclera, radius of the eye, stiffness of the lamina cribrosa, IOP, and thickness of the scleral shell. The five least influential factors were, in reverse ranked order: retinal thickness, peripapillary rim height, cup depth, cup-to-disc ratio, and pial thickness. Factor ranks were similar for various outcome measure groups and factor ranges. The model predicts that ONH biomechanics are strongly dependent on scleral biomechanical properties. Acute deformations of ONH tissues, and the consequent high levels of neural tissue strain, were less strongly dependent on the action of IOP directly on the internal surface of the ONH than on the indirect effects of IOP on the sclera. This suggests that interindividual variations in scleral properties could be a risk factor for the development of glaucoma. Eye size and lamina cribrosa biomechanical properties also have a strong influence on ONH biomechanics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head.

              To improve the quality of optical coherence tomography (OCT) images of the optic nerve head (ONH). Two algorithms were developed, one to compensate for light attenuation and the other to enhance contrast in OCT images. The former was borrowed from developments in ultrasound imaging and was proven suitable with either time- or spectral-domain OCT. The latter was based on direct application of pixel intensity exponentiation. The performances of these two algorithms were tested on spectral-domain OCT images of four adult ONHs. Application of the compensation algorithm significantly reduced the intralayer contrast (from 0.74 ± 0.16 to 0.17 ± 0.12; P < 0.001), indicating successful blood vessel shadow removal. Furthermore, compensation dramatically improved the visibility of deeper ONH tissues, such as the peripapillary sclera and lamina cribrosa. Application of the contrast-enhancement algorithm significantly increased the interlayer contrast (from 0.48 ± 0.22 to a maximum of 0.89 ± 0.05; P < 0.001) and thus allowed a better differentiation of tissue boundaries. Contrast enhancement was robust only when compensation was considered. The proposed algorithms are simple and can significantly improve the quality of ONH images clinically captured with OCT. This study has important implications, as it will help improve our ability to perform automated segmentation of the ONH; quantify the morphometry and biomechanics of ONH tissues in vivo; and identify potential risk indicators for glaucoma.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest. Ophthalmol. Vis. Sci
                iovs
                iovs
                iovs
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                24 June 2016
                June 2016
                : 57
                : 7
                : 3331-3339
                Affiliations
                [1 ]Department of Ophthalmology University of Alabama at Birmingham, Birmingham, Alabama, United States
                [2 ]Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States
                [3 ]Department of Computer and Information Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States
                Author notes
                Correspondence: Christopher A. Girkin, Department of Ophthalmology, Chief Medical Officer, Callahan Eye Hospital, University of Alabama at Birmingham, AL 35233, USA; cgirkin@ 123456uab.edu .
                Article
                iovs-57-07-33 IOVS-15-17940
                10.1167/iovs.15-17940
                4961061
                27367500
                54f26363-6c50-4146-b559-a092aa51b925

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 12 August 2015
                : 24 May 2016
                Categories
                Glaucoma

                lamina cribrosa,optic nerve,optic disc,optical coherence tomography,optic nerve head

                Comments

                Comment on this article