+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Advances in Cardiac Computed Tomography Functional Imaging Technology

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Cardiovascular disease (CVD) is the leading cause of death among patients in China, and cardiac computed tomography (CT) is one of the most commonly used examination methods for CVD. Coronary artery CT angiography can be used for the morphologic evaluation of the coronary artery. At present, cardiac CT functional imaging has become an important direction of development of CT. At present, common CT functional imaging technologies include transluminal attenuation gradient, stress dynamic CT myocardial perfusion imaging, and CT-fractional flow reserve. These three imaging modes are introduced and analyzed in this review.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm.

          To validate an on-site algorithm for computation of fractional flow reserve (FFR) from coronary computed tomographic (CT) angiography data against invasively measured FFR and to test its diagnostic performance as compared with that of coronary CT angiography.
            • Record: found
            • Abstract: found
            • Article: not found

            Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population: The China-PAR Project (Prediction for ASCVD Risk in China).

            The accurate assessment of individual risk can be of great value to guiding and facilitating the prevention of atherosclerotic cardiovascular disease (ASCVD). However, prediction models in common use were formulated primarily in white populations. The China-PAR project (Prediction for ASCVD Risk in China) is aimed at developing and validating 10-year risk prediction equations for ASCVD from 4 contemporary Chinese cohorts.
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve.

              Noninvasive fractional flow reserve (FFR) from coronary computed tomography angiography (cCTA) correlates well with invasive FFR and substantially improves the detection of obstructive coronary artery disease. However, with current algorithms, computed tomography (CT)-based FFR is derived off-site in an involved time-consuming manner. We sought to investigate the diagnostic performance of a novel CT-based FFR algorithm, developed for time-efficient in-hospital evaluation of hemodynamically indeterminate coronary lesions. In a blinded fashion, CT-based FFR was assessed in 67 coronary lesions of 53 patients. Pressure guidewire-based FFR <0.80 served as the reference standard to define hemodynamically significant stenosis and assess the diagnostic performance of CT-based FFR compared with standard evaluation of cCTA (luminal diameter stenosis of ≥50%). We recorded the time needed for derivation of CT-based FFR. On a per-lesion and per-patient basis, CT-based FFR resulted in a sensitivity of 85% and 94%, a specificity of 85% and 84%, a positive predictive value of 71% and 71%, and a negative predictive value of 93% and 97%, respectively. The area under the receiver operating characteristic curve on a per-lesion basis was significantly greater for CT-based FFR compared with standard evaluation of cCTA (0.92 vs 0.72, p = 0.0049). A similar trend, albeit not statistically significant, was observed on per-patient analysis (0.91 vs 0.78, p = 0.078). Mean total time for CT-based FFR was 37.5 ± 13.8 minutes. In conclusion, the CT-based FFR algorithm evaluated here outperforms standard evaluation of cCTA for the detection of hemodynamically significant stenoses while allowing on-site application within clinically viable time frames.

                Author and article information

                S. Karger AG
                October 2020
                23 August 2020
                : 145
                : 10
                : 615-622
                Department of Radiology, Department of Medical Imaging, The First People’s Hospital Kashgar Region, Kashgar, China
                Author notes
                *Xiao-Guang Zou, Department of Radiology, Department of Medical Imaging, The First People’s Hospital Kashgar Region, No. 120 of Yingbin Avenue Street, Kashgar, Xinjiang 844000 (China),
                505317 Cardiology 2020;145:615–622
                © 2020 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 2, Tables: 2, Pages: 8
                Cardiovascular Imaging: Review Article


                Comment on this article