7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chemotropic vs Hydrotropic Stimuli for Root Growth Orientation in Microgravity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding how plants respond to spaceflight and extraterrestrial environments is crucial to develop life-support systems intended for long-term human explorations. Gravity is a main factor influencing root development and orientation, typically masking other tropisms. Considering that reduced levels of gravity affect many plant responses in space, the interaction of other tropic stimuli in microgravity represents the frontier to be investigated aiming at life-support systems optimization. In this paper we report on MULTITROP (Multiple-Tropism: interaction of gravity, nutrient and water stimuli for root orientation in microgravity), an experiment performed on the International Space Station during the Expedition 52/53. Scientific aim of the experiment was to disentangle hydrotropism from chemotropism for root orientation in absence of the gravity stimulus. Among several species relevant to space farming, Daucus carota was selected for the experiment because of its suitability with the experimental hardware and setup. At launch site, carrot seeds were placed between two disks of inert substrate (one imbibed with water and the other with a disodium phosphate solution) and integrated into a hardware developed, refurbished and flight-certificated by Kayser Italia. Post-flight, a Ground Reference Experiment was performed. Root development and orientation of seedlings grown in microgravity and at 1g condition were measured through 3D-image analysis procedures after imaging with X-ray microtomography. Radicle protruded preferentially from the ventral side of the seed due to the asymmetric position of the embryo. Such a phenomenon did not prevent the achievement of MULTITROP scientific goal but should be considered for further experiments on radicle growth orientation in microgravity. The experiment conducted in space verified that the primary root of carrot shows a positive chemotropism towards disodium phosphate solution in the absence of the gravity stimulus. On Earth, the positive chemotropism was masked by the dominant effect of gravity and roots developed downward regardless of the presence/absence of nutrients in the substrate. Taking advantage of altered gravity conditions and using other chemical compounds, further studies should be performed to deepen our understanding of root chemotropic response and its interaction with other tropisms.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits.

          Root elongation in drying soil is generally limited by a combination of mechanical impedance and water stress. Relationships between root elongation rate, water stress (matric potential), and mechanical impedance (penetration resistance) are reviewed, detailing the interactions between these closely related stresses. Root elongation is typically halved in repacked soils with penetrometer resistances >0.8-2 MPa, in the absence of water stress. Root elongation is halved by matric potentials drier than about -0.5 MPa in the absence of mechanical impedance. The likelihood of each stress limiting root elongation is discussed in relation to the soil strength characteristics of arable soils. A survey of 19 soils, with textures ranging from loamy sand to silty clay loam, found that ∼10% of penetration resistances were >2 MPa at a matric potential of -10 kPa, rising to nearly 50% >2 MPa at - 200 kPa. This suggests that mechanical impedance is often a major limitation to root elongation in these soils even under moderately wet conditions, and is important to consider in breeding programmes for drought-resistant crops. Root tip traits that may improve root penetration are considered with respect to overcoming the external (soil) and internal (cell wall) pressures resisting elongation. The potential role of root hairs in mechanically anchoring root tips is considered theoretically, and is judged particularly relevant to roots growing in biopores or from a loose seed bed into a compacted layer of soil.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells.

            Auxin is an essential plant-specific regulator of patterning processes that also controls directional growth of roots and shoots. In response to gravity stimulation, the PIN3 auxin transporter polarizes to the bottom side of gravity-sensing root cells, presumably redirecting the auxin flux toward the lower side of the root and triggering gravitropic bending. By combining live-cell imaging techniques with pharmacological and genetic approaches, we demonstrate that PIN3 polarization does not require secretion of de novo synthesized proteins or protein degradation, but instead involves rapid, transient stimulation of PIN endocytosis, presumably via a clathrin-dependent pathway. Moreover, gravity-induced PIN3 polarization requires the activity of the guanine nucleotide exchange factors for ARF GTPases (ARF-GEF) GNOM-dependent polar-targeting pathways and might involve endosome-based PIN3 translocation from one cell side to another. Our data suggest that gravity perception acts at several instances of PIN3 trafficking, ultimately leading to the polarization of PIN3, which presumably aligns auxin fluxes with gravity vector and mediates downstream root gravitropic response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Halotropism is a response of plant roots to avoid a saline environment.

              Tropisms represent fascinating examples of how plants respond to environmental signals by adapting their growth and development. Here, a novel tropism is reported, halotropism, allowing plant seedlings to reduce their exposure to salinity by circumventing a saline environment. In response to a salt gradient, Arabidopsis, tomato, and sorghum roots were found to actively prioritize growth away from salinity above following the gravity axis. Directionality of this response is established by an active redistribution of the plant hormone auxin in the root tip, which is mediated by the PIN-FORMED 2 (PIN2) auxin efflux carrier. We show that salt-induced phospholipase D activity stimulates clathrin-mediated endocytosis of PIN2 at the side of the root facing the higher salt concentration. The intracellular relocalization of PIN2 allows for auxin redistribution and for the directional bending of the root away from the higher salt concentration. Our results thus identify a cellular pathway essential for the integration of environmental cues with auxin-regulated root growth that likely plays a key role in plant adaptative responses to salt stress. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                22 November 2019
                2019
                : 10
                : 1547
                Affiliations
                [1] 1Department of Agricultural Sciences, University of Naples Federico II , Portici, Italy
                [2] 2Institute for Agricultural and Forest Systems in the Mediterranean, National Research Council , Ercolano, Italy
                Author notes

                Edited by: Valérie Legué, Université Clermont Auvergne, France

                Reviewed by: Joseph G. Dubrovsky, National Autonomous University of Mexico, Mexico; Sergio Mugnai, Erasmus University Rotterdam, Netherlands

                *Correspondence: Luigi Gennaro Izzo, luigigennaro.izzo@ 123456unina.it

                This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2019.01547
                6883720
                31824550
                552f16b4-30d1-49a8-9276-dea0362968d0
                Copyright © 2019 Izzo, Romano, De Pascale, Mele, Gargiulo and Aronne

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 August 2019
                : 05 November 2019
                Page count
                Figures: 4, Tables: 3, Equations: 0, References: 39, Pages: 9, Words: 4885
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                chemotropism,daucus carota,hydrotropism,microgravity,root tropisms,x-ray microtomography

                Comments

                Comment on this article