0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Blunted nitric oxide-mediated inhibition of renal nerve discharge within PVN of rats with heart failure

      1 , 1 , 1
      American Journal of Physiology-Heart and Circulatory Physiology
      American Physiological Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Localization of nitric oxide synthase indicating a neural role for nitric oxide.

          Nitric oxide (NO), apparently identical to endothelium-derived relaxing factor in blood vessels, is also formed by cytotoxic macrophages, in adrenal gland and in brain tissue, where it mediates the stimulation by glutamate of cyclic GMP formation in the cerebellum. Stimulation of intestinal or anococcygeal nerves liberates NO, and the resultant muscle relaxation is blocked by arginine derivatives that inhibit NO synthesis. It is, however, unclear whether in brain or intestine, NO released following nerve stimulation is formed in neurons, glia, fibroblasts, muscle or blood cells, all of which occur in proximity to neurons and so could account for effects of nerve stimulation on cGMP and muscle tone. We have now localized NO synthase protein immunohistochemically in the rat using antisera to the purified enzyme. We demonstrate NO synthase in the brain to be exclusively associated with discrete neuronal populations. NO synthase is also concentrated in the neural innervation of the posterior pituitary, in autonomic nerve fibres in the retina, in cell bodies and nerve fibres in the myenteric plexus of the intestine, in adrenal medulla, and in vascular endothelial cells. These prominent neural localizations provide the first conclusive evidence for a strong association of NO with neurons.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nitric oxide signaling in the central nervous system.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods.

              Experiments using two retrogradely transported fluorescent dyes (bisbenzimide-true blue, and Evans blue-granular blue) were performed in order to determine whether the same or different populations of neurons of the paraventricular nucleus of the hypothalamus (PVH) project to the pituitary gland, dorsal vagal complex, and spinal cord in the rat. The results suggest that cells projecting to the pituitary gland are concentrated in the magnocellular core of the nucleus, while the descending connections arise primarily from the surrounding parvocellular division. The occurrence of neurons double-labeled with both dyes further indicate that at lease 10-15% of the labeled cells in the parvocellular division send divergent axon collaterals to the dorsal vagal complex and to the spinal cord. Cell counts suggest that at least 1,500 cells in the PVH project to the medulla and/or spinal cord. These results, combined with a cytoarchitectonic analysis, show that the PVH consists of eight distinct subdivisions, three magnocellular and five parvocellular. The lateral hypothalamic area and zona incerta also contain a large number of cells projecting to the dorsomedial medulla and spinal cord; approximately 15% of such cells are the double-labeled following injections of separate tracers into these two regions of the same animal.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Heart and Circulatory Physiology
                American Journal of Physiology-Heart and Circulatory Physiology
                American Physiological Society
                0363-6135
                1522-1539
                September 2001
                September 2001
                : 281
                : 3
                : H995-H1004
                Affiliations
                [1 ]Department of Physiology and Biophysics, University of Nebraska Medical Center, Omaha, Nebraska 68198-4575
                Article
                10.1152/ajpheart.2001.281.3.H995
                55847fb6-8b73-41b6-a401-d2fed8ef2e1e
                © 2001
                History

                Comments

                Comment on this article