1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Essential role of Gas6 for glomerular injury in nephrotoxic nephritis

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade.

          A set of growth arrest-specific genes (gas) whose expression is negatively regulated after serum induction has previously been described (C. Schneider, R. M. King, and L. Philipson, Cell 54:787-793, 1988). The detailed analysis of one of them, gas6, is reported here, gas6 mRNA (2.6 kb) is abundantly expressed in serum-starved (48 h in 0.5% fetal calf serum) NIH 3T3 cells but decreases dramatically after fetal calf serum or basic fibroblast growth factor stimulation. The human homolog of gas6 was also cloned and sequenced, revealing a high degree of homology and a similar pattern of expression in IMR90 human fibroblasts. Computer analysis of the protein encoded by murine and human gas6 cDNAs showed significant homology (43 and 44% amino acid identity, respectively) to human protein S, a negative coregulator in the blood coagulation pathway. By using an anti-human Gas6 monospecific affinity-purified antibody, we show that the biosynthetic level of human Gas6 fully reflects mRNA expression in IMR90 human fibroblasts. This finding thus defines a new member of vitamin K-dependent proteins that is expressed in many human and mouse tissues and may be involved in the regulation of a protease cascade relevant in growth regulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Requirement of phosphatidylinositol 3-kinase-dependent pathway and Src for Gas6-Axl mitogenic and survival activities in NIH 3T3 fibroblasts.

            Gas6 is a secreted protein previously identified as the ligand of the Axl receptor tyrosine kinase. We have shown that Gas6 is able to induce cell cycle reentry of serum-starved NIH 3T3 cells and to efficiently prevent apoptosis after complete growth factor removal, a survival effect uncoupled from Gas6-induced mitogenesis. Here we report that the mitogenic effect of Gas6 requires phosphatidylinositol 3-kinase (PI3K) activity since it is abrogated both by the specific inhibitor wortmannin and by overexpression of the dominant negative P13K p85 subunit. Consistently, Gas6 activates the P13K downstream targets S6K and Akt, whose activation is abrogated by addition of wortmannin. Moreover, rapamycin treatment blocks Gas6-induced entry into the S phase of serum-starved NIH 3T3 cells. We also demonstrate the requirement of Src tyrosine kinase for Gas6 signalling since stable or transient expression of a catalytically inactive form of Src significantly inhibited Gas6-stimulated entry into the S phase. Accordingly, Gas6 addition to serum-starved NIH 3T3 cells causes activation of the intrinsic Src kinase activity. When specifically analyzed in a survival assay, these elements were found to be required for the survival effect of Gas6. Taken together, the evidence presented here identifies elements involved in the Gas6 transduction pathway that are responsible for its antiapoptotic effect and suggests that Src is involved in the events regulating cell survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resistance of Fc receptor- deficient mice to fatal glomerulonephritis.

              Immune complex-mediated inflammation is a common mechanism of various autoimmune diseases. Glomerulonephritis (GN) is one of these diseases, and the main mechanism of the induction of GN has been unclear. We examined the contribution of Fc receptors in the induction of nephrotoxic GN by establishing and analyzing mice deficient in the Fc receptor gamma chain (FcRgamma). Whereas all wild-type mice died from severe glomerulonephritis with hypernitremia by administration of anti-glomerular basement membrane (GBM) antibodies, all FcRgamma-deficient mice survived. Histologically, wild-type mice showed glomerular hypercellularity and thrombotic changes, whereas the renal tissue in FcRgamma-deficient mice was almost intact. Deposition of anti-GBM antibody as well as complement components in the GBM were equally observed in both wild-type and knockout mice. These results demonstrate that the triggering of this type of glomerulonephritis is completely dependent on FcR+ cells.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                J. Clin. Invest.
                American Society for Clinical Investigation
                0021-9738
                July 15 2002
                July 15 2002
                : 110
                : 2
                : 239-246
                Article
                10.1172/JCI200214861
                55c698f9-865c-43a6-90fe-e4de1f73dc66
                © 2002
                History

                Comments

                Comment on this article