79
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ketamine Decreases Resting State Functional Network Connectivity in Healthy Subjects: Implications for Antidepressant Drug Action

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increasing preclinical and clinical evidence underscores the strong and rapid antidepressant properties of the glutamate-modulating NMDA receptor antagonist ketamine. Targeting the glutamatergic system might thus provide a novel molecular strategy for antidepressant treatment. Since glutamate is the most abundant and major excitatory neurotransmitter in the brain, pathophysiological changes in glutamatergic signaling are likely to affect neurobehavioral plasticity, information processing and large-scale changes in functional brain connectivity underlying certain symptoms of major depressive disorder. Using resting state functional magnetic resonance imaging (rsfMRI), the „dorsal nexus “(DN) was recently identified as a bilateral dorsal medial prefrontal cortex region showing dramatically increased depression-associated functional connectivity with large portions of a cognitive control network (CCN), the default mode network (DMN), and a rostral affective network (AN). Hence, Sheline and colleagues (2010) proposed that reducing increased connectivity of the DN might play a critical role in reducing depression symptomatology and thus represent a potential therapy target for affective disorders. Here, using a randomized, placebo-controlled, double-blind, crossover rsfMRI challenge in healthy subjects we demonstrate that ketamine decreases functional connectivity of the DMN to the DN and to the pregenual anterior cingulate (PACC) and medioprefrontal cortex (MPFC) via its representative hub, the posterior cingulate cortex (PCC). These findings in healthy subjects may serve as a model to elucidate potential biomechanisms that are addressed by successful treatment of major depression. This notion is further supported by the temporal overlap of our observation of subacute functional network modulation after 24 hours with the peak of efficacy following an intravenous ketamine administration in treatment-resistant depression.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          NMDA Receptor Blockade at Rest Triggers Rapid Behavioural Antidepressant Responses

          Clinical studies consistently demonstrate that a single sub-psychomimetic dose of ketamine, an ionotropic glutamatergic n-methyl-d-aspartate receptor (NMDAR) antagonist, produces fast-acting antidepressant responses in patients suffering from major depressive disorder (MDD), although the underlying mechanism is unclear 1-3 . Depressed patients report alleviation of MDD symptoms within two hours of a single low-dose intravenous infusion of ketamine with effects lasting up to two weeks 1-3 , unlike traditional antidepressants (i.e. serotonin reuptake inhibitors), which take weeks to reach efficacy. This delay is a major drawback to current MDD therapies, leaving a need for faster acting antidepressants particularly for suicide-risk patients 3 . Ketamine's ability to produce rapidly acting, long-lasting antidepressant responses in depressed patients provides a unique opportunity to investigate underlying cellular mechanisms. We show that ketamine and other NMDAR antagonists produce fast-acting behavioural antidepressant-like effects in mouse models that depend on rapid synthesis of brain-derived neurotrophic factor (BDNF). We find that ketamine-mediated NMDAR blockade at rest deactivates eukaryotic elongation factor 2 (eEF2) kinase (also called CaMKIII) resulting in reduced eEF2 phosphorylation and desuppression of BDNF translation. Furthermore, we find inhibitors of eEF2 kinase induce fast-acting behavioural antidepressant-like effects. Our findings suggest that protein synthesis regulation by spontaneous neurotransmission may serve as a viable therapeutic target for fast-acting antidepressant development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antidepressant effects of ketamine in depressed patients.

            A growing body of preclinical research suggests that brain glutamate systems may be involved in the pathophysiology of major depression and the mechanism of action of antidepressants. This is the first placebo-controlled, double-blinded trial to assess the treatment effects of a single dose of an N-methyl-D-aspartate (NMDA) receptor antagonist in patients with depression. Seven subjects with major depression completed 2 test days that involved intravenous treatment with ketamine hydrochloride (.5 mg/kg) or saline solutions under randomized, double-blind conditions. Subjects with depression evidenced significant improvement in depressive symptoms within 72 hours after ketamine but not placebo infusion (i.e., mean 25-item Hamilton Depression Rating Scale scores decreased by 14 +/- SD 10 points vs. 0 +/- 12 points, respectively during active and sham treatment). These results suggest a potential role for NMDA receptor-modulating drugs in the treatment of depression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure.

              Despite widely reported clinical and preclinical studies of rapid antidepressant actions of glutamate N-methyl-D-aspartate (NMDA) receptor antagonists, there has been very little work examining the effects of these drugs in stress models of depression that require chronic administration of antidepressants or the molecular mechanisms that could account for the rapid responses. We used a rat 21-day chronic unpredictable stress (CUS) model to test the rapid actions of NMDA receptor antagonists on depressant-like behavior, neurochemistry, and spine density and synaptic function of prefrontal cortex neurons. The results demonstrate that acute treatment with the noncompetitive NMDA channel blocker ketamine or the selective NMDA receptor 2B antagonist Ro 25-6981 rapidly ameliorates CUS-induced anhedonic and anxiogenic behaviors. We also found that CUS exposure decreases the expression levels of synaptic proteins and spine number and the frequency/amplitude of synaptic currents (excitatory postsynaptic currents) in layer V pyramidal neurons in the prefrontal cortex and that these deficits are rapidly reversed by ketamine. Blockade of the mammalian target of rapamycin protein synthesis cascade abolishes both the behavioral and biochemical effects of ketamine. The results indicate that the structural and functional deficits resulting from long-term stress exposure, which could contribute to the pathophysiology of depression, are rapidly reversed by NMDA receptor antagonists in a mammalian target of rapamycin dependent manner. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                24 September 2012
                : 7
                : 9
                : e44799
                Affiliations
                [1 ]Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
                [2 ]Clinic of Affective Disorders and General Psychiatry, Psychiatric University Hospital, Zurich, Switzerland
                [3 ]Department of Psychiatry, Otto-von-Guericke University, Magdeburg, Germany
                [4 ]Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
                [5 ]Clinical Affective Neuroimaging Laboratory (CANLAB), Center for Behavioral and Brain Sciences, CBBS, Magdeburg, Germany
                [6 ]Cluster Languages of Emotion, Freie Universität Berlin, Berlin, Germany
                [7 ]Department of Psychiatry, Charité, CBF, Berlin, Germany
                [8 ]Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
                [9 ]Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
                University G. D'Annunzio, Italy
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MS MW SG HB PB AH ES. Performed the experiments: MS ML. Analyzed the data: MS MW CM. Wrote the paper: MS MW CM SG AH ES.

                Article
                PONE-D-12-11360
                10.1371/journal.pone.0044799
                3461985
                23049758
                5650f492-5251-4951-a227-dc38b007e218
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 April 2012
                : 14 August 2012
                Page count
                Pages: 9
                Funding
                Imaging was carried out using an MR scanner financed by the “highly specilized medicine” grant of the canton of Zurich. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Neurochemistry
                Neurochemicals
                Glutamate
                Neuroscience
                Neurochemistry
                Neurochemicals
                Glutamate
                Neuroimaging
                Fmri
                Neurotransmitters
                Medicine
                Drugs and Devices
                Psychopharmacology
                Mental Health
                Psychiatry
                Mood Disorders

                Uncategorized
                Uncategorized

                Comments

                Comment on this article